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Abstract

Instant radiosity methods rely on using a large number of
virtual point lights (VPLs) to approximate global illumina-
tion. Efficiency considerations require grouping the VPLs
into a small number of clusters that are treated as individual
lights with respect to each point to be shaded. Two exam-
ples of clustering algorithms are Lightcuts [WFA∗05] and
LightSlice [OP11]. In this work we use the notion of geo-
metric separatedness of point sets as a basis for a data struc-
ture for pre-computing and compactly storing a set of can-
didate VPL clusterings. Our data structure is created prior
to rendering, is view-independent and relies only on geo-
metric and radiometric information. For any point to be
shaded, we show that a suitable clustering of the VPLs can
be efficiently extracted from this data structure. We develop
the above framework into an accurate and efficient cluster-
ing algorithm based on well-separated pair decompositions
which outperforms earlier work in speed and/or quality for
diffuse scenes.

1 Introduction

Several methods have been proposed to solve the global il-
lumination problem, towards the ultimate goal of efficient
and realistic rendering of large scenes in the presence of
varied and complex lighting effects. Pure unbiased Monte
Carlo algorithms such as Metropolis light transport [VG97]
or simple bidirectional path tracing [VG95] are considered
to be gold standards for reference solutions. However they
produce noisy results that are slow to converge in the case
of complex scenes. Biased algorithms like Photon Map-
ping [Jen01], point-based global illumination [Chr08] or
the many-lights methods, such as Instant Radiosity [Kel97],
provide good performance in many practical applications.

The last method and its improvements have proven to be
very useful for approximating global illumination. By trac-
ing light paths from light sources, they create virtual point
lights (VPLs) at the intersections of the surface of the scene
and the paths. Global illumination is estimated by comput-
ing the direct illumination from all of the VPLs (we refer the
reader to the SIGGRAPH 2012 course notes on the many-

Figure 1: WSPD Clustering for Sibenik cathedral. The bot-
tom half shows the rendered model and the top half the Eu-
clidean error multiplied by 32 with color mapping.

lights problem [KHA∗12] and to the EG state-of-the-art re-
port [DKH∗13]). Despite some limitations, they provide a
unified and scalable approach to the problem of comput-
ing global illumination. However, as the number of VPLs
needed for a good-fidelity approximation is large, comput-
ing the illumination for each point by summing up the con-
tribution of each individual VPL can become prohibitively
expensive.

Clustering in the many-lights method. Let S be the set
of VPLs, henceforth considered the set of input lights and
P be the set of points to be shaded, i.e., points in the scene
hit by the rays traced for all the pixels. One key idea for
speeding up computations is to cluster the VPLs. In other
words, for each point p ∈ P , partition S into a small num-
ber of clusters (each partition of S into clusters is called a
clustering of S), and then consider each cluster as a single
VPL when calculating its contribution to the shading at p.

The goal is to compute, for each p ∈ P , a clustering that
minimizes the shading error at p. See Figure 1 for the image
produced by our clustering algorithm as well as the differ-
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ence from the reference image. This forces all algorithms
to be adaptive, i.e., as one iterates over all the points to be
shaded, the clustering has to be recomputed again with re-
spect to the spatial and radiometric properties of each point
(though various improvements are possible, at a loss of
quality, by exploiting spatial coherence to re-use previous
computation).

As the set S of VPLs is view-independent, an idea that
improves efficiency is to compute the set of all possible can-
didate clusters of S before the rendering computation (and
store in some hierarchical structure). Then during render-
ing, a clustering for each point is selected by choosing an
appropriate subset of clusters from this pre-computed set.
This is an expensive task which forces examining a large
number of clusters (again, this can be somewhat amelio-
rated by exploiting the spatial coherence between neighbor-
ing pixels). This has been the basis of previous work; two
well-known examples are Lightcuts [WFA∗05] and Light-
Slice [OP11].

Our Contributions. We consider our main contributions
to be two-fold. First, we make the next logical step
in the many-lights clustering paradigm: rather than pre-
computing a set of individual candidate clusters from which
clusterings are computed during rendering, we pre-compute
a number of clusterings of S. Then, during the rendering
phase, the clustering for a point p can simply taken to be
one of these pre-computed clusterings, together with some
minor modification. Our data structure stores the cluster-
ings compactly, it is view-independent and computed prior
to rendering. This results in a very efficient rendering phase.
For a very natural criterion of clustering, we show that

• the total number of these pre-computed clusterings
will be independent of the number of points in P to
be shaded and will only depend on the size of S.

• the modification required for each point will be prov-
ably small; in fact it will be independent of the size of
S or P .

Second, we develop the above framework into an accu-
rate and efficient new many-lights clustering method. It
computes a clustering relying on geometric and radiomet-
ric data for fast and accurate computation. We show that
the complexity of our scheme is largely invariant on geo-
metric scenes, and it is easily scalable with the number of
VPLs.

We prove theoretical guarantees as well as experimen-
tally validate the computational efficiency of our scheme,
contrasting it with two of the most well-known earlier sys-
tems, Lightcuts [WFA∗05] and LightSlice [OP11]. In par-
ticular, the advantages of our work include:

• Our pre-computation phase is view-independent, and
so are the pre-computed clusterings. Unlike LightSlice
and Lightcuts, this allows our algorithm to re-utilize
computation with changing camera position.

• As all the clustering computations are moved to the
pre-computation phase, the rendering phase takes con-
stant time for each p ∈ P , i.e., independent of the
number of VPLs. On the other hand, Lightcuts has to
maintain a heap and do clustering computations. Our
method is able to produce similar output as Lightcuts
with around 3 times average speedup.

• It outperforms LightSlice in speed and quality, achiev-
ing, e.g., 2 times speedup with consistently better qual-
ity. The errors of our algorithm are smooth, and vi-
sually difficult to detect, unlike for LightSlice which
suffers from visible blocking effects.

• It also uses a significantly lower amount of mem-
ory than LightSlice which requires around 30 GB for
scenes with around 0.5 million VPLs while our algo-
rithm runs with 5 GB. This allows the usage of a con-
siderably higher number of VPLs for rendering.

Broadly our work shows that the set of VPLs itself con-
tain enough information such that with intensive prepro-
cessing, a geometrically good clustering can be constructed
for each point p ∈ P with provably little effort.

Organization. In Section 2 we review previous work on
global illumination with the many-lights method. After pre-
liminaries in Section 3, we present the novel ideas involved
in our approach in Section 4. Theoretical details on our
clustering representation and computation follow in Sec-
tion 5. Section 6 describes additional structures to further
improve the clustering. Extensive experimental results and
comparison with previous work are presented in Section 7.
Finally, limitations and future work is discussed in Sec-
tion 8. Appendix 10 contains all the formal proofs of the
statements stated in the paper.

2 Previous Work

Many-lights rendering techniques estimate global illumina-
tion using VPLs. In Instant radiosity [Kel97], the original
many-lights technique, each point is shaded using all VPLs.
Since then, many improvements have been made to avoid
the limitations such as clamping and diffuse-only global
illumination. Further efforts to optimize the computation
include carefully placing the VPLs, speeding up visibility
computation or selecting a subset of the VPLs to use for
each shaded point.

Real-time techniques. Approximate global illumina-
tion can be done in real-time with incremental selection of
the VPLs [LSK∗07], quick shadow computations and de-
ferred shading [RGK∗08] or using simple scene descrip-
tors [HREB11]. Clustering VPLs into area lights for real-
time GPU based rendering has been proposed in [PKD12].
[SIMP06] uses stochastic sampling of VPLs to achieve in-
teractive frame rates. Our method has different scope from
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all these approaches since it is designed to handle signifi-
cantly larger number of VPLs.

Avoiding limitations. Several limitations of VPL-based
algorithms can be addressed, e.g., clamping [KK06] or
diffuse only surface BRDFs by using virtual spherical
lights [HKWB09] (VSL) or Rich-VPLs [SHD15]. To cope
better with highly glossy material [KFB10], Davidovič et
al. [DKH∗10] use row-column sampling combined with
adaptive raycasting. Bidirectional lightcuts [WKB12] or
specular gathering [DKL10] combine path tracing and VPL
techniques, therefore extending the range of materials and
effects. As those algorithms still rely on the classical clus-
tering of VPLs, our technique is complementary to theirs.

VPL generation can also be optimized by sampling
VPLs based on their overall image contribution [GS10].
This importance-driven VPL sampling can be further im-
proved [GKPS12] using a sparse set of locations stor-
ing probability distributions derived from accurate lighting.
Compared to light clustering implementations, sampling in-
troduces unstructured noise. [SIP07] samples the VPLs us-
ing a modified Metropolis-Hastings algorithm [VG97].

Optimization via clustering. Thousands of VPLs are
needed for photo-realistic rendering and therefore, given a
point to be shaded, a careful grouping of the VPLs can im-
prove efficiency. This leads to clustering strategies such
as Lightcuts [WFA∗05] where VPLs are grouped together
in light clusters and organized in a tree. This tree is then
adaptively searched to extract pertinent VPL clusters for
global illumination estimation for each point. This adap-
tivity works especially well for local lighting but tends to
oversample occluded lights. This method has been further
generalized by building a tree of the shaded points to further
minimize the cost of shading [WABG06, BMB15].

Hašan et al. [HPB07] were the first to study the light
transport matrix, where each row of the matrix represents a
point to be shaded and each column represents a VPL. After
sampling a small set of matrix rows to form a reduced ma-
trix, they cluster the columns according to this matrix. Then
each point is shaded using representatives of these clusters.
It captures greatly the global lighting but fails to handle
very local lighting and suffers from the inherent flaws of
the shadow mapping algorithm as observed by Ou and Pel-
lacini [OP11], who further studied the light transport ma-
trix. They built LightSlice, a technique that creates matrix
slices using a clustering of image pixels based on their ge-
ometric proximity. Then these slices are sampled to create
a reduced matrix and compute a global clustering of VPLs.
This clustering is then refined for each slice based on the
sample of the given slice and its neighboring slices in an
attempt to capture the local structure of the matrix. Their
solution has a prohibitively big memory consumption and
shows block artifacts.

3 Preliminaries
We use similar notation as in Lightcuts [WFA∗05]. The ra-
diance for a point p ∈ P in direction ω caused by the direct
contribution of the lights in S is denoted by L(p,ω). It is a
function that sums up over all lights the product of the ma-
terial, geometry, visibility and intensity terms, where each
product represents the radiance caused by a single light:

L(p,ω) = ∑
s∈S

Ms(p,ω) ·Gs(p) ·Vp(s) · Is (1)

p

s

θ

ω

Np
ω′

β

Nsφ

Here Is is the intensity of the light s while the geomet-
ric term Gs(p) captures the light attenuation. The VPLs
are spotlights having a direction Ns, and therefore Gs(p) =
cos(φ)/d(p,s)2, where d(p,s) is the Euclidean distance be-
tween p and s, and φ is the angle between Ns and the vector
p− s. The material term Ms(p,ω) is the BRDF which de-
pends on the local geometry and material at p. We will use
Lambertian and Phong BRDFs, which only depend on the
angles θ and β. The former is the angle between the surface
normal Np and the light direction s− p and the latter is the
angle between ω′ (the view direction ω reflected on Np) and
the light direction. Vp(s) denotes the visibility of p from the
light s.

For a cluster C ⊆ S, let rep(C) denote a representative
light s ∈ C. Then the radiance at p from lights in C with
representative rep(C) can be approximated as:

LC(p,ω) = Mrep(C)(p,ω) ·Grep(C)(p) ·Vp(rep(C)) ·∑
s∈C

Is

(2)
Let C = {C1, . . . ,Ck} denote a clustering of S into k clusters.
The radiance at P from all the lights in S can be approxi-
mated as:

LC(p,ω) = ∑
C∈C

LC(p,ω) (3)

4 Our Approach
For a point p ∈ P to be shaded, consider a clustering of
the set of VPLs S into k clusters C1, . . . ,Ck such that the
radius of the smallest-ball containing each cluster is much
smaller than the distance of that ball to p (this will be for-
mulated precisely in Section 5). Call such a cluster well-
separated, or a ws-cluster for brevity, from p, and the clus-
tering {C1, . . . ,Ck} a well-separated clustering, or a ws-
clustering, for p. Intuitively, from the point of view of
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Figure 2: Overview of the system building blocks. The Embree framework (in purple) has been augmented by our
algorithms (in green). Details of each block follow in Sections 4, 5 and 6.

p, all the points in each cluster behave roughly like a sin-
gle point. Figure 3 illustrates this for an arbitrary point p,
shaded bright green, a few of the ws-clusters of S around
it. Note that as the ws-cluster’s distance to p decreases, the
well-separated criterion automatically ensures that the ra-
dius of the cluster decreases as well. Our goal is to compute
a ws-clustering of S for each point p to be shaded during the
rendering phase.

Our approach has two main components: first we propose
a method to pre-compute and compactly store several ws-
clusterings of S . Then during rendering, we show how to
quickly extract a ws-clustering for each point to be shaded
using this pre-computed structure. This pre-computed clus-
tering will then be slightly modified to fit the spatial prop-
erties of the shaded point. We sketch the main components
of the system in Figure 2, and outline them below.

Figure 3: The Museum scene with the well-separated
clusters (represented by their enclosing spheres) around a
shaded point, shown as a bright green square in the middle
of the image. For visualization purposes we only included
a quarter of the clusters.

Pre-compute clusterings
The computation of ws-clustering for each point p is depen-
dent on spatial properties of p, and requires individual com-
putation during rendering for each point, an expensive task.
Instead, we will do the following in a view-independent pre-
rendering phase: compute a ws-clustering of S with respect
to each light s ∈ S . In other words, for each light s in S,
compute the partition of the remaining lights into clusters
satisfying the well-separatedness criterion. The key to this
construction will be the use of a partitioning data-structure,
the well-separated pair decomposition [CK95] (henceforth
denoted as WSPD). These ws-clusterings will be stored im-
plicitly in a compact structure from which the ws-clustering
for any light s ∈ S can be extracted quickly.

Well-separated clusters approximate the geometric terms
of the rendering equation, but ignore visibility and material
properties. To adjust for this, we will further compute two
additional structures in this pre-processing phase. First, we
further group the lights in each ws-cluster C into a small
number of subgroups by similar light normals. This ad-
ditional grouping will be used to evaluate the illumination
from the cluster more precisely. Second, we introduce rep-
resentative lights that approximate local visibility for each
ws-cluster C as follows: sample a number of directions and
compute the illumination of the lights in C reaching the
boundary of the ball b(C) in the sampled directions, where
b(C) is the smallest-ball containing C. This will be used to
estimate the visibility of the lights in C to b(C); the visibil-
ity test from b(C) to p will be performed during the view-
dependent rendering phase.

Retrieve ws-clustering
During the rendering computation, for an arbitrary point p,
find the closest point in S to p (an approximate nearest-
neighbor is sufficient and will be used), and start with its
(pre-computed) clusters as the clustering for p. Further-
more, refine each cluster by subdividing it into new clusters
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until they are well-separated from p. The number of clusters
required to achieve this ws-clustering criteria could poten-
tially be quite high, for two reasons: i) the clustering for
the closest point in S to p could have many clusters, and ii)
refinement could add many more new clusters to this initial
clustering. It will be shown that refinement can only add a
constant number of new clusters for any point p. This con-
stant is provably independent of the number of lights in S
or points in P . Also, under some basic assumptions on the
geometry of scenes, we will show that the average size of a
ws-clustering for points of p will be logarithmic in the size
of S . Experimental evidence will confirm this behavior.

Calculate L(p,ω)

Let Cp = {C1, . . . ,Ck} be the final constructed ws-clustering
for p∈P during rendering. Furthermore let {C1

i , . . . ,C
ki
i } be

the ki subgroups of each Ci by similar light normals. From
a single subgroup C j

i of Ci ∈ Cp, we compute:

LC j
i
(p,ω) = Mrep(C j

i )
(p,ω) ·Grep(C j

i )
(p) · ∑

s∈C j
i

Is (4)

Then we approximate the illumination at p from the cluster
Ci ∈ Cp as:

LCi(p,ω) =

(
ki

∑
j=1

LC j
i
(p,ω)

)
·Vp(∂(b(Ci))) ·R(Ci, p) (5)

where Vp(∂(b(Ci))) denotes the visibility from p to the
boundary of the sphere b(Ci) enclosing cluster Ci; this is
computed by a shadow ray with the Embree raytracing ker-
nel. R(Ci, p) is the proportion of the summed intensity of
the lights in Ci reaching the boundary of the ball b(Ci) in
the direction from the center of b(Ci) to p; see Section 6 for
its precise definition and computation.

5 Constructing ws-clusterings
For a cluster C⊆S , define b(C) to be the smallest-enclosing
ball of the points in C. Let r(C) be the radius of the ball
b(C). For any point p, d(p,C) denotes the Euclidean dis-
tance of p to b(C).

A well-separated cluster. We introduce a necessary con-
dition that each cluster must satisfy when constructing a
clustering of S w.r.t. a shaded point p – namely that it is
well-separated from p, for a given parameter 0 ≤ ε ≤ 1 (ε
will be called the separation parameter).

Definition 5.1. A cluster of lights C is well-separated from
a point p if r(C) < ε · d(p,C), where ε is the separation
parameter.

The lights in a ws-cluster w.r.t. p are ‘far enough’ from
p, and concentrated in a small ball (see Figure 4). This con-
dition implies that from the point of view of p, all the lights

C

p
d(p,C) r(C)

Figure 4: For ε = 0.5, C is ws from p. In other words, we
have d(p,C)> 2 · r(C).

in a ws-cluster are in a similar direction and the distances
of p to the lights in C are approximately the same. Since
the luminosity reaching p depends on the angle and the dis-
tance of lights in S from p (differences regarding visibility
and light normals will be accounted for later in Section 6)
it can be argued that treating all the lights in a ws-cluster as
one point does not introduce significant error. This intuition
is captured in the following theorem:

Theorem 5.1. For a point p and a ws-cluster C ⊆ S , as-
sume that all lights in C face in the same direction and they
have the same visibility from p. Then the error from repre-
senting C with any one light in C (which has the cumulative
intensity summed over all the lights in C) is bounded by a
function depending only on ε. In case the point to be shaded
has Lambertian BRDF, it is

|L(p,ω)−LC(p,ω)|= O(ε) ∑
s∈C

Is

d(p,s)2 (6)

where L(p,ω) denotes the exact illumination from lights in
C.

Proof is in the Appendix.
To compute ws-clusterings efficiently, we will need to use
a basic structure in the theory of geometric computing, the
well-separated pair decomposition.

Well-separated pair decompositions. We first need to
extend the notion of well-separatedness between a point and
a cluster to that of between two clusters. Two point sets
R and Q are well-separated from each other if, for a given
separation parameter ε > 0, the radius of both the balls b(R)
and b(Q) is smaller than ε ·d(R,Q), i.e., max(r(R),r(Q))<
ε · d(R,Q) where d(R,Q) is the distance between b(R) and
b(Q).

Definition 5.2. A well-separated pair decomposition of S
for a given separator parameter ε is a list of pairs of clusters
{{R1,Q1} , . . . ,{Rs,Qs}}, where each Ri,Qi ⊆ S , and

i) for every pair of points p,q∈S , there is a unique index
i such that p ∈ Ri and q ∈ Qi, and

ii) for all i = 1 . . .s, the clusters Ri and Qi are well-
separated from each other, with separation parameter
ε.

Here s is called the size of the WSPD. See Figure 5
for some example pairs {Ri,Qi} for a point set in two di-
mensions. A remarkable fact about WSPDs is that there
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2.5× zoom

Figure 5: Each red edge represents a pair {Ri,Qi}, where
the sets Ri,Qi are enclosed in green circles.

always exist WSPDs of size linear in |S|. In particular,
for any ε > 0, and any set of points S ⊂ Rd , there exists
a WSPD of size O(|S|ε−d) that can be computed in time
O(|S| log |S|+ |S|ε−d) [CK95] .
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Figure 6: A geometric condition.
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Figure 7: WSPD size ratios for some graphical scenes.

Recall that the set of VPLs S was placed on the surface
of objects by tracing random light particles from the light
sources. The geometry of graphics scenes is usually such
that it satisfies a technical geometric condition. Namely,

that if the three-dimensional space was partitioned into
equal-sized cubes of size δ, the boundary of scene objects
would intersect on average O(ε−2) cubes in a ball of radius

δ/ε (note that there are Θ( (δ/ε)3

δ3 ) = Θ(ε−3) cubes in a ball
of radius δ/ε). Figure 6 shows that, for a variety of scenes,
the average number of cells containing VPLs within a ball
of radius δ/ε in our octree behaves more like O(ε−2) than
O(ε−3). This implies better than cubic dependency on 1/ε

of WSPD sizes in three dimensions, since the proof [CK95]
uses a trivial cubic upper bound for non-empty cubes of size
δ within a ball of radius δ/ε. Experimental results con-
firm this: Figure 7 plots, for several scenes, the ratio of the
WSPD size for varying separation parameter ε to WSPD
size for separation parameter 1. Observe that the behavior
of the WSPD is relatively unchanged from one scene to the
next.

Constructing well-separated pair decomposition of S.
We use a compressed octree of S as an underlying data
structure to compute the initial ws-clusters for S, to find ap-
proximate nearest neighbors, and for the local refinement
for each point p during the rendering computation. The
compressed octree is an octree where the non-branching
paths are contracted into one edge. The compressed oc-
tree can be directly computed in linear time [Sam95]. Each
node corresponds to an axis-aligned bounding box. We as-
sociate with each node the set of VPLs of S contained in
its bounding box. Note that each leaf of the octree contains
exactly one unique point of S. For a node w, denote by
Rw the corresponding set of VPLs. Note that the height of
the octree is linear in the worst-case, though in practice it
is logarithmic. In Table 1 we show the depth of the tree for
300K VPLs, which is logarithmic for a variety of scenes.

Tree depth
Scene Octree Compressed

Conference 19 14
Sibenik 20 14
Museum 18 15

San Miguel 22 14

Table 1: Octree depths with 320K VPLs, both with and
without compression.

After constructing the compressed octree, Algorithm 1
computes the WSPD of S by utilizing a top down search
on the tree for ws-pairs. Two nodes w,v of the octree will
form a ws-pair if the corresponding sets Rw,Rv are well-
separated. Note that instead of simply storing all the pairs
of the WSPD as a list, we directly store the WSPD struc-
ture in the octree by storing, for each node w of the octree,
a list of pointers to all the other nodes with which w forms
ws-pairs in the WSPD. We denote this list by pairs(w). In
Figure 8 we show a simple example for 2 dimensional data
with the red links denoting the pairs of sets. The construc-
tion ensures a hierarchical structure on the clusters which
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Algorithm 1 Create WSPD for the set of points S
1: function CREATEWSPD(S)
2: root ← create compressed octree on S
3: S: stack of pairs, S.pushback({root,root})
4: while notEmpty(S) do
5: {w,v} = S.pop()
6: if isWellSeparated(Rw,Rv) then
7: Insert v into pairs(w)
8: Insert w into pairs(v)
9: else

10: if r(Rw)< r(Rv) then
11: Swap(w,v)
12: end if
13: for all i ∈ children(w) do
14: S.pushback({i,v})
15: end for
16: end if
17: end while
18: end function

enables us to easily refine a cluster if needed by simply de-
scending in the octree.

a
b c d

e
f

a,b,c,d,e, f

e, f
d

a,b,c

e f a b c

Figure 8: The compressed octree and the WSPD for a set
of points.

Pre-computing ws-clusterings of S. From the WSPD of
S one can compute a set of clusterings {Cs,s ∈ S}, where
Cs will be a ws-clustering of S for the point s ∈ S. Namely,
for each s ∈ S, Cs is a partition of the lights in S \{s} into a
number of clusters, each of which is well-separated from s.
Note that if the two sets {R,Q} are well-separated, then for
every point p ∈ R, Q is a ws-cluster with respect to p. The
definition of WSPD ensures that for every pair of points
p1 and p2, there is a unique {R,Q} such that p1 ∈ R and

Algorithm 2 Constructing ws-clusters Cp for p ∈ P .

1: function CONSTRUCTWSPDCLUSTERING(p)
2: Cp←∅
3: s← closest point in S to p
4: Cs← ws-clustering of s
5: for all Q ∈ Cs do
6: if d(s,Q)≥ d(p,s)

ε
then

7: add Q to Cp
8: else
9: refine Q into subclusters that are ws from p

10: add the resulting clusters to Cp
11: end if
12: end for
13: return Cp
14: end function

p2 ∈ Q. Therefore Cs = {Q | {R,Q} is ws,s ∈ R} is a ws-
clustering of S for s. If the WSPD has been computed,
then a ws-clustering for each point s ∈ S can be extracted
from it efficiently, as follows. Consider the leaf node of the
compressed octree corresponding to s. Any node w of the
octree on the path from this leaf to the root has s ∈ Rw, and
so the ws-clustering of s is simply the union of pairs(w) for
all such nodes w, and can be computed by traversing the
octree from this leaf to the root.
Computing ws-clusterings of P during rendering. We
now show how to use the clusterings Cs, pre-computed for
each s ∈ S before the rendering phase, to quickly compute
a ws-clustering of S with respect to any point p ∈ P .

Consider the case for an arbitrary point p ∈ P . Compute
the closest light, say s ∈ S, to p. One could use a variety of
known optimal algorithms, but for us an approximation will
suffice. We find the smallest node of the compressed octree
containing p and return an arbitrary light contained in it. A
calculation shows that for randomly shifted octrees, the ex-
pected distance from the true nearest neighbor is bounded.
Point location in a compressed octree takes O(logn) time
with some additional data structures, but for us the naive
implementation suffices as the tree has logarithmic depth
(see Table 1).

Say s is at distance d from p. Take the ws-clustering
Cs of s. These were pre-computed, and can be efficiently
retrieved. The key idea now is to consider two types of
clusters in Cs separately: far clusters in Cs are at distance
further than d/ε from s and close clusters are those closer
than d/ε from s. We show that each far cluster in Cs is an
approximately ws-cluster from p. For the remaining close
clusters in Cs, we recursively subdivide them until they are
ws-clusters from p. The subdivision uses the same octree
that was used for the construction of the WSPD. See Algo-
rithm 2. Note that the above algorithm is adaptive to the lo-
cal geometry of the scene: for a point p closely surrounded
by VPLs, it will refine at a smaller radius.

We now prove that the clusters far from s are approxi-
mately ws-clusters from p.
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Lemma 5.1. Let p be an arbitrary point and s be its
nearest-neighbor with d(p,s) = d. Any ws-cluster Co ∈ Cs
disjoint with the ball of radius d

ε
around s is approximately

well-separated from p, namely it is well-separated with sep-
aration parameter ε′ = ε

1−ε
.

Proof is in the Appendix.
We next prove that the additional number of clusters

added in the refinement of a cluster close to s is low.

Theorem 5.2. Let p be an arbitrary point and s be its near-
est neighbor with d(p,s) = d. After refining the clusters in
the set C∗⊆Cs which intersect the ball with radius d

ε
around

s, there are at most O( 1
ε6 ) new ws-clusters C′ created. The

resulting set Cs\C∗ ∪C′ is a partition of S into ws-clusters
around p, with separation parameter ε/(1− ε).

Proof is in the Appendix.
While the above theorem may be surprising at first

glance, we hope the following intuition sheds some light:
consider the distance of the closest point s ∈ S to p. If this
distance is small, then it is not hard to argue that the clus-
ters for the closest light provide a good approximation of
the clustering for p, and so little refinement is necessary.
On the other hand, if this closest distance is large, then all
points of S are ‘far’ from p, and so any ws-cluster from s
is far from p and thus approximately well-separated from
p; again little refinement is needed to approximate the sep-
aration (and thus illumination). This intuition is formalized
in the proof of the theorem. For empirical validation, see
Table 2 for the maximum number of new clusters added per
point for a number of scenes with varying values of ε.

Refined clusters for varying ε

Scene 0.9 0.7 0.5 0.3 0.1
Conference 58 75 114 227 1401

Sibenik 57 74 109 219 1505
Museum 81 103 159 326 2350

San Miguel 80 108 167 370 3411

Table 2: Maximum number, over all p ∈ P, of added clus-
ters during refinement with 320K VPLs.

Cluster sizes. We have proved that the clustering stored
in the WSPD can be used to retrieve clustering for arbi-
trary points without increasing the number of clusters more
than an additive constant. It remains to argue that the initial
clustering for every light s ∈ S is compact. While one can
construct examples of arbitrary points where the average
number of ws-clusters for a point p is linear (as a function
of |S|), those are never realized in practice for the set of
lights arising in geometric scenes. The spatial partitioning
structures (octrees) turn out to be roughly balanced, and so
the number of ws-clusters is logarithmic.

6 Additional structures for illumina-
tion computation

We enhance the purely geometric WSPD based clustering
with the following additional structures that improve the ef-
ficiency and accuracy in calculating illumination. Recall
that given a ws-clustering Cp for p, for a ws-cluster Ci ∈ Cp,
the approximation of the radiance with a single representa-
tive has the form:

Mrep(Ci)(p,ω) ·Grep(Ci)(p) ·Vp(rep(Ci)) · ∑
s∈Ci

Is. (7)

Clustering refinement by direction. The WSPD data
structure is able to efficiently bound angles and distances
between points. However, the normals of the lights could
vary widely in directions. To overcome this difficulty,
the lights in each ws-cluster are grouped into a few sub-
groups with similar normals. For a ws-cluster Ci, construct
the subgroups C1

i , . . . ,C
ki
i , where all the lights in each C j

i ,
j = 1 . . .ki, will have similar normal directions. The ap-
proximation then becomes

LCi(p,ω) =

(
ki

∑
j=1

LC j
i
(p,ω)

)
·Vp(rep(Ci)) (8)

where LC j
i
(p,ω) is defined in Equation 4. The subgroups

are constructed by first picking a center c j ∈ Ci for each
subgroup C j

i , and then assigning each VPL s ∈ C j to the
subgroups with most similar center. see Algorithm 3. Dur-

Algorithm 3 Computing subgroups of a given cluster Ci

1: function CLUSTERNORMALS(Ci)
2: j← 1; c1← random light in Ci
3: largestDistance←∞
4: while largestDistance≥ threshold do
5: For each s ∈Ci, ds←mink≤ j d(s,ck)
6: c j+1← q, where q has largest dq value
7: j← j+1
8: largestDistance← dq
9: end while

10: For each l, Cl
i ←{s ∈Ci|l = arg mink< j d(s,ck)}

11: end function

ing the shading of a point p ∈ P , as before, visibility test
will still be performed once for each ws-cluster of p. How-
ever, the radiance LCi(p,ω) for a ws-cluster Ci will be calcu-
lated by summing up the radiance contributions separately
for each subgroup C j

i of Ci, using the normal of the cen-
ter light for each subgroup. The distance d(s,c j) used in
the algorithm is the Euclidean distance with threshold set
to 0.01, which did not result in too many subgroups on av-
erage (see Table 3). The number of subgroups is slightly
higher for more complex scenes and decreases with ε since
the clustering becomes more fine.
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Scene Average number of subgroups
ε 0.9 0.7 0.5 0.3

Conference 8.3 8.1 6.7 5.3
Sibenik 9.5 9.3 8.0 5.9
Museum 23.3 21.2 16.8 11.4

San Miguel 44.72 39.6 31.2 18.5

Table 3: Average number of subgroups per cluster.

Visibility testing. Visibility differences within a cluster
can cause errors with a fixed representative light. Consider
for example a flat object with VPLs on both sides. Since the
representative light is either on one side or the other, visi-
bility queries falsely return occlusion if the pixel is on the
other side of the object. To overcome this problem we pro-
pose to augment our ws-clusters with additional visibility
information.

As stated in Theorem 5.1, without taking into account
visibility differences, a ws-clustering with a single repre-
sentative and clustered normals gives a good approximation
to L (as a function of ε). The visibility computation for a ws-
cluster Ci will be divided into two parts: a simple shadow
test from p to the boundary of the ball of Ci for the out-
side visibility and then shadow testing from the boundary
to each light for visibility inside the ball of Ci. Here again
the geometric well-separated property of the ws-clustering
comes in useful, as the angles from p to Ci are bounded (as
a function of ε). We use a new approximation for L(p,ω),
to better handle visibility:

LCi(p,ω) =

(
ki

∑
j=1

LC j
i
(p,ω)

)
·Vp(∂(b(Ci))) ·R(Ci, p) (9)

R(Ci, p) is the proportion of the summed intensity of the
lights in Ci reaching the boundary of the ball b(Ci) in the
direction of p from the center of b(Ci).

R(Ci, p) =
∑s∈Ci

Vp(s,∂(b(Ci))) · Is · cosφs

∑s∈Ci
Is · cosφs

(10)

where Vp(s,∂(b(Ci))) denotes the visibility from s to the
boundary of the sphere in the direction from the center of
b(Ci) to the shaded point p and φs is the angle between the
same direction and the normal of the light. Note that as
ε→ 0, equation 9 converges to L(p,ω). Since computing
R(Ci, p) during rendering would be expensive, we do the
following in the pre-processing phase. For each cluster Ci
and for a small uniform set of directions on ∂b(Ci), R(Ci, p)
is pre-computed and stored in a cubemap (with a resolution
of 6×6 on each side). This enables quick lookup of R(Ci, p)
for p. During the rendering of a point p, nearest-neighbor
interpolation on the cubemap yields R(Ci, p). A shadow test
to ∂b(Ci) gives the Vp term.

High intensity clusters. To further minimize the error
coming from a badly chosen representative for high inten-

sity clusters we limit the radiance from each cluster (by fur-
ther refining the cluster if necessary) to be less than 1% of
the radiance received by a pixel. This refinement happens at
the pre-processing phase only using approximate intensities
between the cluster pairs.

7 Results and discussion
In this section we present the experimental results on sev-
eral scenes of varying complexity. Timings are for a work-
station equipped with two Xeon X5570 processors each
with 4 cores running at 2.93GHz and with 32 GB of mem-
ory. We compare our algorithm with two well-known meth-
ods: Lightcuts [WFA∗05] and LightSlice [OP11]. The au-
thors of LightSlice have made their code publicly avail-
able, which also includes an implementation of Lightcuts.
In order to do fair comparisons between all three meth-
ods, we have ported their implementation of LightSlice
(and Lightcuts) into the ray-tracing system INTEL EM-
BREE [WFWB13] without modifying the core of the algo-
rithms. Our code is also written to use Embree as its ray-
tracing engine.

Unless otherwise stated, we run LightSlice and Lightcuts
with similar parameters as used in [OP11]: Lightcuts error
bound is set to 1% and unbounded the maximum cut size. In
order to compare our method to Lightcuts with the param-
eters set as in [WFA∗05], we include results with 2% error
and maximum cut size set to 2000. We use the version with
1% error threshold as the reference for equal quality com-
parisons. LightSlice is run with approximately 1400 slices
and 400 columns (the number of slices determines the size
of the reduced light transport matrix while the number of
columns determines the number of clusters used per point).
For our method, the user is free to set the separation param-
eter ε. This parameter closely tracks both theoretically and
practically the quality of the resulting image. In general,
setting ε to 0.5 gives a good compromise between quality
and speed.

One inherent disadvantage of the many-lights technique
is the presence of certain artifacts due to the overly-high
contribution of some VPLs to their neighboring points. The
standard way to avoid these problems is by clamping: lim-
iting the contribution of any one VPL within some small
Euclidean distance by applying a clamping threshold. The
bias introduced by this technique requires the image ren-
dered with all VPLs to be used as our reference image and
not the path traced one. Our experiments use 1 and 4 sam-
ples per pixel to compare the quality of clustering obtained
by the different methods.

Scenes. We test the algorithms on standard collection of
scenes with only moderately glossy materials. The Museum
has specular materials like the bones of the dinosaur and the
canvas on its stand. Most of the primary lights are facing the
ceiling to ensure that the scene is mainly lit by indirect illu-
mination. In Sibenik, the light sources are facing upwards
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Museum Sibenik Conference San Miguel

Scenes
Triangles 1.5M 0.07M 0.33M 10.5M
Resolution 1024x1024@1 1024x1024@1 1024x1024@1 1024x1024@1
VPLs 472K 540K 516K 400K

Lightcuts(1%)
max cut: ∞

Preproc. time (s) 0.38 0.47 0.44 0.29
Render time (s) 515.06 216.29 219.43 1583.63
Avg # of rays 1872 1399 957 3226
RMSE 0.004674 0.003094 0.002220 0.005828
LMSE 0.000735 0.001124 0.003228 0.003134
Rel. Error(%) 1.123480 1.094558 1.273182 2.617376
Speedup 1.0 1.0 1.0 1.0

Lightcuts (2%)
max cut: 2000

Preproc. time (s) 0.38 0.47 0.43 0.29
Render time (s) 218.81 103.31 125.98 306.39
Avg # of rays 884 724 556 714
RMSE 0.006223 0.004401 0.003030 0.021054
LMSE 0.001155 0.001599 0.002794 0.019569
Rel. Error(%) 1.727831 1.860882 1.689145 8.528274
Speedup 2.3 2.1 1.8 5.2

Lightslice

Preproc. time (s) 0.02 0.02 0.02 0.01
Render time (s) 208.17 225.12 202.44 106.94
Avg # of rays 665 795 750 463
RMSE 0.009606 0.006820 0.005657 0.034085
LMSE 0.009220 0.005171 0.009392 0.236342
Rel. Error(%) 3.273127 3.342225 4.164747 13.855263
Speedup 2.5 1.0 1.1 14.8

WSPD 0.7

Preproc. time (s) 52.00 50.01 40.52 35.10
Render time (s) 62.93 31.10 35.24 86.91
Avg # of rays 711 532 642 715
RMSE 0.007049 0.004366 0.003515 0.014771
LMSE 0.002025 0.002145 0.003384 0.028564
Rel. Error(%) 2.416694 2.148956 2.592963 7.539747
Speedup 8.2 7.0 6.2 18.2

WSPD 0.5

Preproc. time (s) 55.88 52.86 44.47 38.73
Render time (s) 86.72 37.85 42.33 115.87
Avg # of rays 901 635 665 915
RMSE 0.005750 0.004254 0.002858 0.013161
LMSE 0.001642 0.002147 0.003961 0.023084
Rel. Error(%) 1.923812 1.826188 2.180026 6.760511
Speedup 5.9 5.7 5.2 13.7
Preproc. time (s) 76.86 64.31 60.41 232.91
Render time (s) 190.27 68.00 80.28 950.88
Avg # of rays 1913 1183 1318 6972
RMSE 0.004652 0.002833 0.002219 0.005864
LMSE 0.001040 0.001822 0.002624 0.004080
Rel. Error(%) 1.439894 1.261353 1.597909 2.886980
Speedup 2.7 3.2 2.7 1.6

WSPD ε

(equal RMSE
compared to

Lightcuts(1%) )

ε 0.25 0.25 0.25 0.09

Reference WSPD ε Lightcuts WSPD ε Eucl x32 Lightcuts Eucl x32

Table 4: Rendering statistics and images for the three different methods, Lightcuts, LightSlice and the WSPD algorithm.
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in the dome such that the scene is again lit by indirect illu-
mination, and is made up of purely diffuse materials. The
big uniformly colored surfaces in the Conference are chal-
lenging since the clustering methods have to be spatially
consistent, with moderately shiny materials. The outdoor
scene San Miguel is our largest scene consisting of 10M
triangles lit by an environment map of sunset. This is our
most challenging scene since the area under the tree and in
the corridors is mostly lit by indirect illumination with lots
of smooth shadows.

Performance. The images are rendered at a 1024×1024
resolution with 1 sample per pixel (spp) and with approxi-
mately 500K VPLs. We provide the running times for the
pre-processing and the rendering phase along with the aver-
age number of shadow rays per pixel.

We provide three different error metrics. Denote by
F(x,y,c) the value of a color channel c in the image at coor-
dinate (x,y) and by F̂(x,y,c) the same value in the reference
image. The number of pixels multiplied by the number of
color channels is m = 3 · 1024 · 1024 and each value of F
and F̂ is between 0 and 1.

• The normalized RMSE provides numerical difference
against the VPL reference image:

RMSE =

√
∑

(F(x,y,c)− F̂(x,y,c))2

m

where the summation is over all pixels and color chan-
nels of the images.

• The LMSE represents the average squared difference
of the gradients between the rendered image and the
reference [SPA07]:

LMSE =
∑(∇F(x,y,c)−∇F̂(x,y,c))2

∑∇F(x,y,c)

where ∇F(x,y,c) = F(x + 1,y,c) + F(x − 1,y,c) +
F(x,y + 1,c) + F(x,y − 1,c) − 4F(x,y,c). A high
LMSE error implies sharp discontinuities (e.g., sharp
error edges), identifying more noticeable errors.

• Average relative error is given by:

Rel. Error =
100
m
·∑
|F(x,y,c)− F̂(x,y,c)|

F̂(x,y,c)
.

The error images are calculated by taking the channel-wise
Euclidean distance between the image, and the VPL refer-
ence image, and multiplying it by a factor of 32.

Table 4 shows the results with all these statistics. In gen-
eral, we find that with ε = 0.25, the quality of our results
is similar to Lightcuts with around 3× speedup (the last
row in Table 4). The average number of shadow rays for
WSPD can be larger than that of Lightcuts; however, as
proved earlier, almost no other computation except visibil-
ity testing is done by the WSPD algorithm. The WSPD

method solely relies on the pre-computed pairs which re-
sults in a shorter rendering time since there is no additional
work done. Lightcuts, on the other hand, has to descend the
tree, maintaining an expensive heap data structure during
this traversal. The cost of calculating upper bounds during
rendering is also significant. Bounding the maximum cut
size can result in significant loss of quality unless the ideal
cut size is known a priori (e.g., as in San Miguel). Consid-
ering this run as a reference for equal quality comparison,
our method with ε = 0.5 still shows similar or even better
quality with around 3 times speed-up (e.g., as in Museum).

LightSlice is able to explore the structure of VPLs and
adapt to it more efficiently than Lightcuts, but dividing the
image into slices results in visually disturbing blocking ar-
tifacts if the error is not low enough. This is captured by the
high errors (especially the LMSE) of LightSlice compared
with WSPD ε in all the scenes. The WSPD method locally
adjusts the cluster radius based on the well-separated cri-
teria. Thus the errors in the resulting image are smoothly
distributed, with visually minimal artifacts. The value of
the parameter ε closely tracks the quality; for scenes with
complex shadows like San Miguel, ε has to be set lower
(0.1) for comparable quality to Lightcuts. LightSlice relies
also on a fixed parameter (number of columns, set to 400).
For San Miguel it is unable to adapt to the complexity of the
shadows with such a low number of columns, resulting in
faster running times with high errors.

Scalability. See Table 5 for the total memory (GB) used
by the three methods. Lightcuts is the most efficient on
memory consumption, followed by WSPD. LightSlice, due
to the light transport matrix storage, has prohibitively high
memory consumption.

# VPLs: 75K 115K 200K 375K 776K
Lightcuts 0.59 0.6 0.63 0.74 0.84
LightSlice 4.53 6.31 9.85 18.81 36.58
WSPD 0.5 1.14 1.40 1.98 3.38 6.17

Table 5: Memory requirements for the Museum scene (GB).

In Figure 9 we plot the rendering times of the three meth-
ods with varying number of VPLs in the Museum scene.
Note how our algorithm consistently outperforms Lightcuts
even with 3M VPLs and both of them scale sub-linearly in
the number of lights. LightSlice is only usable as long as it
does not allocate more memory than the system has.

Trade-off: In Figure 10 we plot the relative error and the
rendering time against ε in the Museum scene. The curve is
not strictly monotonic since our algorithm is not determin-
istic (e.g., approximate nearest neighbor).

Blocking artifacts. In contrast to LightSlice, our method
and Lightcuts currently do not take advantage of using dif-
ferent representative lights for each sample per pixel. We
have found that increasing the number of samples increases
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1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8

00.20.40.60.81
0
100
200
300
400
500
600
700
800

re
la

tiv
e

er
ro

r(
%

)

tim
e(

s)

ε

Figure 10: Relative error (red) and render time (green) with
varying ε for the Museum scene.
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Figure 11: Part of the Museum scene rendered with different
values of samples per pixel.

the quality of the images rendered with LightSlice. Table 6
shows some results with 4 samples per pixel. Note that our
algorithm still matches LightSlice in performance. See Fig-
ure 11 for the effect of multiple samples per pixel on the
Museum scene. Our method has no visible artifacts (nor
does Lightcuts) even with ε = 0.9 and 1 sample per pixel.
On the other hand LightSlice has visible blocks on the im-
age due to the clustering of the shaded points. These errors
can be reduced by increasing the number of columns for
LightSlice but this results in a higher running time. If one
increases the number of samples then LightSlice becomes
competitive, although some artifacts remain even with 9
samples per pixel.

Refinement. This method ensures that the final clustering
used for a point satisfies our theoretical criteria. However,
with a high number of VPLs the approximate nearest neigh-
bor search is very accurate therefore our refinement method
has less importance. If the density of the VPLs is low in
an area its usage becomes more important in order to avoid
blocking artifacts. We demonstrate this in Figure 12, by
rendering the scene with and without refinement.

Figure 12: Error images for the Museum with 10K VPLS,
rendered with refinement (left) and without refinement
(right), for ε = 0.25.

8 Limitation and future work

We have showed that the WSPD structure is suitable for
compactly storing clustering information and for providing
fast extraction of clusters during render time. We showed
theoretical bounds on the error for diffuse materials. The
data structure proposed in this paper gives a new perspective
on how to efficiently store and retrieve a view-independent
clustering for scenes. This framework is very flexible and
leaves several possibilities for improving and enhancing the
current solution.

One of the main limitations of our method is that it is
suited towards diffuse surfaces, and the quality decreases
with highly glossy surfaces. The upper-bound proved in
Theorem 5.1 increases as a function of glossiness, and
so higher glossiness requires smaller values of ε in the
WSPD construction for similar error upper-bounds. One
can compensate for it with decreasing ε, at the loss of effi-
ciency. In order to demonstrate this, we have replaced the
Phong BRDFs in the Conference scene with Blinn micro-
facet BRDFs. This BRDF results in a very significant con-
tribution from the direction of the reflected view ray. See
Figure 13 for the results with 1 sample per pixel. The most
prominent error is around the shadows of the chairs on the
highly glossy floor where the exponent for the Blinn micro-
facet BRDF is set to 100. Lightcuts can more efficiently
adapt to highly glossy materials than our method.

A similar problem is the need to use a small ε for scenes
with highly varying visibility properties since in this case
the number of clusters increases globally without only refin-
ing the clustering where it is necessary. To overcome these
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Museum Conference

Scenes
Triangles 1.5M 0.33M
Resolution 1024x1024@4 1024x1024@4
VPLs 474K 516K

Lightcuts

Preproc. time (s) 0.48 0.44
Render time (s) 2080.97 876.96
Avg # of rays 7544 3828
RMSE 0.003374 0.002119
LMSE 0.001008 0.003789
Rel. Error(%) 0.905316 1.208336
Speedup 1.0 1.0

Lightslice

Preproc. time (s) 0.01 0.02
Render time (s) 344.73 262.89
Avg # of rays 1696 1792
RMSE 0.005662 0.003025
LMSE 0.005431 0.005524
Rel. Error(%) 1.836033 2.328994
Speedup 6.0 3.3

WSPD 0.7

Preproc. time (s) 63.47 40.27
Render time (s) 265.25 158.72
Avg # of rays 2660 2528
RMSE 0.006984 0.003378
LMSE 0.002270 0.004733
Rel. Error(%) 2.318444 2.425038
Speedup 7.8 5.5

WSPD 0.5

Preproc. time (s) 68.38 43.25
Render time (s) 356.20 165.58
Avg # of rays 3728 2588
RMSE 0.005661 0.003029
LMSE 0.001876 0.005271
Rel. Error(%) 1.809967 2.099148
Speedup 5.8 5.3

WSPD 0.3

Preproc. time (s) 84.68 56.42
Render time (s) 646.19 260.38
Avg # of rays 6228 4192
RMSE 0.005458 0.002664
LMSE 0.001481 0.004486
Rel. Error(%) 1.563184 1.717990
Speedup 3.2 3.4

Museum Reference Conference Reference

WSPD 0.5 WSPD 0.5

LightSlice LightSlice

WSPD 0.5 Eucl x32 WSPD 0.5 Eucl x32

LightSlice Eucl x32 LightSlice Eucl x32

Table 6: Rendering statistics and images for 4 samples per pixel.

Reference Lightcuts WSPD 0.1

Figure 13: Part of the Conference scene with highly glossy
floor using 1 sample per pixel.

limitations one might consider the following improvements:

• Currently our definition of well-separatedness is
purely geometric, without taking into account the visi-
bility properties of the clusters. It would be interesting
if the pre-processing phase can use visibility queries to
adaptatively guide the construction of cluster pairs.

• One of the strengths of our approach is that the pre-
processing phase already computes pairs of clusters,
which are then modified in a limited manner during
the rendering phase. Furthermore this computation is
view-independent. This opens up the possibility of re-
using this computation with changing camera position,
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towards animations, interactive rendering, or even the
final goal of real-time global illumination.
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10 Appendix

10.1 Proofs
In this section we give the proofs of Theorem 5.1, 5.2 and
Lemma 5.1.

Theorem 5.1. First we show ε-dependent bounds of the
changes of angles and distances between p and the lights
in a ws-cluster C. See Figure 14 for the interaction of p
with two lights s,r in C where r denotes the light chosen as
the representative of the cluster.

C

p
s

r
∆θ

d(p,C)
r(C)

Figure 14: Changes in the angles and distances are bounded
by a function of ε.

Estimating the change in the distances follows immedi-
ately from the ws property:

d(p,s)≤ d(p,r)+2r(C)≤ d(p,r)+2εd(p,s) (11)

For bounding the change of angles ∆θ, it is clear that the
angle between the two tangents of the circle from p is the
upper bound. The center of the circle, p and the point on
tangency form a right angle triangle:

sin
∆θ

2
=

r(C)

d(p,C)+ r(C)
≤ εd(p,C)

d(p,C)
≤ ε (12)

Hence using the approximation for the sine function with
Taylor series we have ∆θ = O(ε).

In the following we approximate the error for one cluster
using the previous results. We assume that the visibility is
always 1 (the case of 0 is trivial). Therefore the error is:

|L(p,ω)−LC(p,ω)|= (13)

= |∑
s∈C

Vp(s)IsMs(p,ω)Gs(p)

−Vp(r)Mr(p,ω)Gr(p) ∑
s∈C

Is| (14)

= ∑
s∈C

Is |Ms(p,ω)Gs(p)−Mr(p,ω)Gr(p)| (15)

The above formula has the important property that the Ms
and Gs functions are dependent on the cosines of angles
and distances which are closely bounded because of the ws
property. This result intuitively means that the error cannot
be too big for a BRDF that relies on distances and angles. In
the case of the diffuse BRDF, Ms(p,ω)= kd(p)cosθs where
kd(p) is the diffuse reflection coefficient and θs is the angle
between the surface normal at p and s− p. Denote by φs
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the angle between the light normal and p−s and for brevity
denote d(p,s) by rs, then the formula becomes:

∑
s∈C

Is

∣∣∣∣kd(p)cosθs cosφs

r2
s

− kd(p)cosθr cosφr

r2
r

∣∣∣∣= (16)

kd(p) ∑
s∈C

Is

∣∣∣∣cosθs cosφs

r2
s

− cos(θs +∆θs)cos(φs +∆φs)

(rs +∆rs)2

∣∣∣∣
(17)

We omit a complete analysis and just minimize the sub-
trahend assuming that ∆θ,∆φ,∆r ≥ 0 (the other cases are
similar). Using the ws property and that cos(θ + ∆θ) ≥
cosθ−∆θ,

≤ kd(p) ∑
s∈C

Is

(
cosθs cosφs

r2
s

− (cosθs−∆θs)(cosφs−∆φs)

(1+2ε)2r2
s

)
(18)

Using that cosx≤ 1 and the bound on ∆θ

≤ kd(p) ∑
s∈C

Is

(
(4ε+4ε2 +∆θs +∆φs−∆θs∆φs)

(1+2ε)2r2
s

)
(19)

= O(ε)kd(p) ∑
s∈C

Is

r2
s

(20)

In other words, the error is proportional to the complete in-
tensity received by a pixel. Note that this does not account
for visibility difference of course, which we address with
other methods.

Remark: In the case of Phong BRDF the Ms(p,ω) func-
tion becomes ks(p)cosnβs cosθs where βs is the angle be-
tween ω and the direction of s− p reflected on the surface
normal (the subscript of k now refers to the word specular).
In this case the above calculations are as follows:

∑
s∈C

Is

∣∣∣∣ks(p)cosn βs cosθs cosφs

r2
s

− ks(p)cosn βr cosθr cosφr

r2
r

∣∣∣∣
(21)

= ks(p) ∑
s∈C

Is

∣∣∣∣cosn βs cosθs cosφs

r2
s

− cosn(βs +∆βs)cos(θs +∆θs)cos(φs +∆φs)

(rs +∆rs)2

∣∣∣∣
(22)

≤ ks(p) ∑
s∈C

Is

(
cosn βs cosθs cosφs

r2
s

− (cosβs−∆βs)
n(cosθs−∆θs)(cosφs−∆φs)

(1+2ε)2r2
s

)
(23)

One could upper bound this error but the subtrahend con-
verges to 0 as n→∞ hence in this case one could only give
a weak bound which depends on n as well. If we were to set

ε according to such a bound one would have to build a too
fine WSPD which would result in a prohibitively big run-
time. We remark that this could be possibly overcome by re-
fining the WSPD with a smaller epsilon during the render-
ing phase but only for those clusters that have a high value
for Mr(p,ω). However we have not experimented with this
approach.

p
s

Co

Ci

d
ε

d
do

Figure 15: A close ws-cluster Ci and a far ws-cluster Co
from s.

Lemma 5.1. See Figure 15. As Co is ws from s, it follows
that εd0 ≥ r(Co), where r(Co) is the radius of the clus-
ter Co. Also d ≤ εdo since the cluster is disjoint. Trian-
gle inequality implies d(s,Co) = do ≤ d + d(p,Co), and so
d(p,Co) ≥ do− d ≥ do(1− ε) ≥ r(Co)(1−ε)

ε
. Thus for the

slightly larger value of the separation parameter ε′ = ε

1−ε
,

Co is ws from p.

Theorem 5.2. The second statement of the proof comes
from Lemma 5.1. Take a cluster Ci ∈ Cs lying inside the ball
of radius d/ε around s. If it is not ws-separated from p, par-
tition the bounding-box of Ci into 8 equal-volume bounding
boxes (the children of the node in the octree), and recur-
sively check the ws-separated property of these new refined
clusters with p. Eventually when a newly refined cluster is
finally a ws-cluster from p, add it to C′. To count the total
number of new ws-clusters added to C′, consider a cluster
C ∈ C′. It exists because its parent, say cluster D, was not a
ws-cluster with p. i.e., r(D)> εdp, where dp is the distance
of the ball of D to p. Because s is the nearest neighbor of p
we know that no other point is in the small ball of radius d
around p; in particular it cannot completely contain the ball
of D and hence r(D)/ε ≥ dp ≥ d− 2r(D), which implies
that r(D)≥ d

2+ε−1 . So each cluster added to C′ has a parent
with radius at least the above value. Grouping the parents
by size (higher level parents are the same size but multi-
plied by some power of two) we can give an upper bound
on their number by a simple packing argument since par-
ents with the same size are disjoint (since octree nodes can
either contain each other or be disjoint):

∞

∑
i=0

(
d/ε

2i( d
2+ε−1 )

)3

= O(
1
ε6 ) (24)

Since we have bounded the number of parents and each of
them can have at most 8 children, this finishes the proof.
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