Embree: High Performance Ray Tracing
Kernels 2.3.1

Embree: High

Performance Ray Tracing Kernels 2.3.1

Table of Contents:

1 |[Embree: High Performance Ray Tracing Kernels 2.3.1 .

1.1 [Embree Overvigw .

1.2 SuEEorted Platforﬂns ..

1.3] nstalllnﬁ Embree on Wlndoﬂvs .
1.4 [Installing Embree on Linux and Mac OB X .
1.5 [Embree ARI

151

Scerje.

152

Geometrigs

1.5.
1.5.

15
15

2.1[Triangle Meshks
2.2[Hair Geometry. .
.2.3[User Defined Geomﬁtry
.2.4[Instancgs .

153
154
155
156
1.5.7

1.6 [Emb

Ray Querig¢s .
Buffer Sharirdg. .
Linear Motion Blﬂr.
Geometri Ma];k
Filter Functioﬁs

16.1
1.6.2
1.6.3
1.6.4
1.6.5
1.6.6
1.6.7
1.6.8

ree Tutorlals .

[TutorialO]
TutonalOl .
TutorialOp .
TutorialOB .
TutorialO@ .
o)
6

U

TutorialOp .
Tutorial0p .
TutorialO

\‘

1.6.9

[Embree ¢ oupport and Coﬁltact .

18 Jun 2014

Table of Contents:

~NO O OTWNNNPRF PR

Embree: High Performance Ray Tracing Kernels 2.3.1 1 Embree: High Performance Ray Tracing Kernels 2.3.1

1 Embree: High Performance Ray Tracing Kernels
2.3.1

1.1 Embree Overview

Embree is a collection of high-performance ray tracing kernels, developed at Intel. The target user of
Embree are graphics application engineers that want to improve the performance of their application by
leveraging the optimized ray tracing kernels of Embree. The kernels are optimized for photo-realistic
rendering on the latest Intel® processors with support for SSE, AVX, AVX2, and the 16-wide Xeon Phi™
vector instructions. Embree supports runtime code selection to choose the traversal and build algorithms
that best matches the instruction set of your CPU. We recommend using Embree through its API to get the
highest benefit from future improvements. Embree is released as Open Source ufder the Adache 2.0

flicensé.

Embree supports applications written with the Intel SPMD Programm Compiler (ISPC,
[http://ispc.github.co) by also providing an ISPC interface to the core ray tracing algorithms. This makes
it possible to write a renderer in ISPC that leverages SSE, AVX, AVX2, and Xeon Phi™ instructions
without any code change. ISPC also supports runtime code selection, thus ISPC will select the best code
path for your application, while Embree selects the optimal code path for the ray tracing algorithms.

Embree contains algorithms optimized for incoherent workloads (e.g. Monte Carlo ray tracing algorithms)
and coherent workloads (e.g. primary visibility and hard shadow rays). For standard CPUs, the single-ray
traversal kernels in Embree provide the best performance for incoherent workloads and are very easy to
integrate into existing rendering applications. For Xeon Phi™, a renderer written in ISPC using the default
hybrid ray/packet traversal algorithms have shown to perform best, but requires writing the renderer in
ISPC. In general for coherent workloads, ISPC outperforms the single ray mode on each platform. Embree
also supports dynamic scenes by implementing high performance two-level spatial index structure
construction algorithms.

In addition to the ray tracing kernels, Embree provides some tutorials to demonstrate how to use the
Embree APIl. The example photorealistic renderer that was originally included in the Embree kernel
package is now available in a separate GIT repository (see Embree Example Renderer).

1.2 Supported Platforms

Embree supports Windows, Linux and Mac OS X, each in 32bit and 64bit modes. The code compiles with
the Intel Compiler, the Microsoft Compiler, GCC and CLANG. Using the Intel Compiler improves perfor-
mance by approximately 10%. Performance also varies across different operating systems. Embree is opti-
mized for Intel CPUs supporting SSE, AVX, and AVX2 instructions, and requires at least a CPU with
support for SSE2.

The Xeon Phi™ version of Embree only works under Linux in 64bit mode. For compilation of the the
Xeon Phi™ code the Intel Compiler is required. The host side code compiles with GCC, CLANG, and the
Intel Compiler.

18 Jun 2014 1

http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://ispc.github.com/

1.3 Installing Embree on Windows

1.3 Installing Embree on Windows

To install the Embree libray on your system add the folder lib/x64 to your PATH. To compile applications
with Embree you also have to set the "Include Directories" path in Visual Studio to the include/ folder of
Embree.

Before you can run the tutorials in the bin/x64 folder you have to install the Embree library.

1.4 Installing Embree on Linux and Mac OS X

To install the Embree libray and Embree header files on your system type the following:

sudo ./install.sh

Instead of installing the Embree library, you can also source the file paths.sh:

source ./paths.sh

1.5 Embree API

The Embree API is a low level ray tracing API that supports defining and committing of geometry and
performing ray queries of different types. Static and dynamic scenes are supported, that may contain trian-
gular geometry (including linear motions for motion blur), instanced geometry, and user defined geometry.
Supported ray queries are, finding the closest scene intersection along a ray, and testing a ray segment for
any intersection with the scene. Single rays, as well as packets of rays in a struct of array layout can be
used for packet sizes of 1, 4, 8, and 16. Filter callback functions are supported, that get invoked for every
intersection encountered during traversal.

The Embree API exists in a C++ and ISPC version. This document describes the C++ version of the API,
the ISPC version is almost identical. The only differences are that the ISPC version needs some ISPC
specific uniform type modifiers, and limits the ray packets to the native SIMD size the ISPC code is
compiled for.

The user is supposed to include #gmabree2/rtcore.h , and theembree2/rtcore_ray.h file,
but none of the other header files. If using the ISPC version of the API, the user should include
embree2/rtcore.isph andembree2/rtcore_ray.isph

#include <embree2/rtcore.h>
#include <embree2/rtcore_ray.h>

All API calls carry the prefixtc which stands foray tracing core. Before invoking any API call, the
Embree ray tracing core has to get initialized througtrittiait call. Before the application exits it
should calltcExit . Initializing Embree again after atcExit is allowed.

rtcinit(NULL);

rtcExit();

2 18 Jun 2014

Embree: High Performance Ray Tracing Kernels 2.3.1 1.5.1 Scene

Thertclnit call initializes the ray tracing core. An optional configuration string can be passed through
this function to configure implementation specific parameters. If this string is NULL, a default configura-
tion is used, that is optimal for most usages.

API calls that access geometries are only thread safe as long as different geometries are accessed.
Accesses to one geometry have to get sequentialized by the application. All other API calls are thread safe.
The rtcintersect andrtcOccluded calls are re-entrant, but only for otiéeintersect and
rtcOccluded calls. It is thus safe to trace new rays when intersecting a user defined object, but not
supported to create new geometry inside the intersect function of a user defined geometry.

Each user thread has its own error flag in the API. If an error occurs when invoking some API function,
this flag is set to an error code if it stores no previous error.r{E@etError function reads and

returns the currently stored error and clears the error flag again. For performance reasons the ray query
functions do not set an error flag in release mode, but do so if Embree is compiled in debug mode.

Possible error codes returnedrgGetError are:

Error Code Description
RTC _NO_ERROR No error occured.
RTC_UNKNOWN_ERROR An unknown error has occured.
RTC_INVALID_ARGUMENT An invalid argument was specified.
RTC_INVALID_OPERATION The operation is not allowed for the specified object.
RTC_OUT_OF MEMORY There is not enough memory left to complete the operation.
RTC_UNSUPPORTED_CPU The CPU is not supported as it does not support SSE2.

Using thertcSetErrorFunction call, it is also possible to set a callback function that is called
whenever an error occurs. The callback function gets passed the error code, as well as some string that
describes the error further. Passing NULLrtcSetErrorFunction disables the set callback func-

tion again. The previously described error flags are also set if an error callback function is present.

1.5.1 Scene

A scene is a container for a set of geometries of potentially different types. A scene is created using the
rtcNewScene function call, and destroyed using thieDeleteScene function call. Two types of

scenes are supported, dynamic and static scenes. Different flags specify the type of scene to create and the
type of ray query operations that can later be performed on the scene. The following example creates a
scene that supports dynamic updates and the singtechatersect andrtcOccluded calls.

RTCScene scene = ricNewScene(RTC_SCENE_DYNAMIC,RTC_INTERSECT1);

rtcDeleteScene(scene);

18 Jun 2014 3

1.5.1 Scene

Using the following scene flags the user can select between creating a static and dynamic scene.

Scene Flag Description
RTC_SCENE_STATIC scene optimized for static geometry
RTC_SCENE_DYNAMIC scene optimized for dynamic geometry

A dynamic scene is created by invokiigNewScene with theRTC_SCENE_DYNAMIfag. Different
geometries can now be created inside that scene. Geometries are enabled by default. Once the scene geom-
etry is specified, artcCommit call will finish the scene description and trigger building of internal data
structures. After thetcCommit call it is safe to perform ray queries of the type specified at scene
construction time. Geometries can get disabtézD{sable call), enabled againttEnable call),

and deletedr{cDeleteGeometry call). Geometries can also get modified, including their vertex and

index arrays. After the modification of some geometigModified has to get called for that geome-

try. If geometries got enabled, disabled, deleted, or modifiedc@ommit call has to get invoked

before performing any ray queries for the scene, otherwise the effect of the ray query is undefined.

A static scene is created by ttteNewScene call with theRTC_SCENE_STATIGlag. Geometries can

only be created and modified until the firstkCommit call. After thertcCommit call, each access to

any geometry of that static scene is invalid, including enabling, disabling, modifying, and deletion of
geometries. Consequently, geometries that got created inside a static scene can only get deleted by delet-
ing the entire scene.

The following flags can be used to tune the used acceleration structure. These flags are only hints and may
be ignored by the implementation.

Scene Flag Description

Creates a compact data structure and avoids algorithms that

RTC_SCENE_COMPACT
- - consume much memory.

RTC_SCENE_COHERENT Optimize for coherent rays (e.g. primary rays)
RTC_SCENE_INCOHERENT Optimize for in-coherent rays (e.g. diffuse reflection rays)
RTC_SCENE_HIGH_QUALITY Build higher quality spatial data structures.

The following flags can be used to tune the traversal algorithm that is used by Embree. These flags are
only hints and may be ignored by the implementation.

Scene Flag Description

RTC_SCENE_ROBUST Avoid optimizations that reduce arithmetic accuracy.

4 18 Jun 2014

Embree: High Performance Ray Tracing Kernels 2.3.1 1.5.2 Geometries

The second argument of thieNewScene function are algorithm flags, that allow to specify which ray
gueries are required by the application. Calling for a scene a ray query API function that is different to the
ones specified at scene creation time is not allowed. Further, the application should only pass ray query
requirements that are really needed, to give Embree most freedom in choosing the best algorithm. E.g. in
case Embree implements no packet traversers for some highly optimized data structure for single rays,
then this data structure cannot be used if the user specifies any ray packet query.

Algorithm Flag Description

Enables thetcintersect andrtcOccluded functions (single ray

RTC_INTERSECT1 interface) for this scene

Enables thetcintersect4 andrtcOccluded4 functions (4-wide

RTC_INTERSECT4 packet interface) for this scene

Enables thetcintersect8 andrtcOccluded8 functions (8-wide

RTC_INTERSECTS packet interface) for this scene

Enables thetcintersect16 andrtcOccluded16 functions (16-wide

RTC_INTERSECT16 packet interface) for this scene

1.5.2 Geometries

Geometries are always contained in the scene they are created in. Each geometry is assigned an integer ID
at creation time, which is unique for that scene. The current version of the API supports triangle meshes
(rtcNewTriangleMesh), single level instances of other scene&Newlnstance), and user

defined geometriesttNewUserGeometry). The API is designed in a way that easily allows adding

new geometry types in later releases.

For dynamic scenes, the assigned geometry IDs fulfill the following properties. As long as no geometry
got deleted, all IDs are assigned sequentially, starting from 0. If geometries got deleted, the implementa-
tion will reuse IDs later on in an implementation dependent way. Consequently sequential assignment is
no longer guaranteed, but a compact range of IDs. These rules allow the application to manage a dynamic
array to efficiently map from geometry IDs to its own geometry representation.

For static scenes, geometry IDs are assigned sequentially starting at 0. This allows the application to use a
fixed size array to map from geometry IDs to its own geometry representation.

1.5.2.1 Triangle Meshes

Triangle meshes are created using tiedewTriangleMesh function call, and potentially deleted
using thertcDeleteGeometry function call.

The number of triangles, number of vertices, and number of time steps (1 for normal meshes, and 2 for
linear motion blur), have to get specified at construction time of the mesh. The user can also specify addi-
tional flags that choose the strategy to handle that mesh in dynamic scenes. The following example
demonstrates howto create a triangle mesh without motion blur:

18 Jun 2014 5

1.5.2 Geometries

unsigned geomID = rtcNewTriangleMesh(scene,geomFlags,numTriangles,numVertices,1);

The following geometry flags can be specified at construction time of the triangle mesh:

Geometry Flag Description

The mesh is considered static and should get modified rarely

RTC_GEOMETRY_STATIC by the application. This flag has to get used in static scenes.

The mesh is considered to deform in a coherent way, e.g. a
skinned character. The connectivity of the mesh has to stay

RTC_GEOMETRY_DEFORMABLE constant, thus modifying the index array is not allowed. The
implementation is free to choose a BVH refitting approach
for handling meshes tagged with that flag.

The mesh is considered highly dynamic and changes
RTC_GEOMETRY_DYNAMIC frequently, possibly in an unstructured way. Embree will
rebuild data structures from scratch for this type of mesh.

The triangle indices can be set by mapping and writing to the index bRf€ (NDEX_BUFFERand

the triangle vertices can be set by mapping and writing into the vertex R¥i€r YERTEX_BUFFBER

The index buffer contains an array of three 32 bit indices, while the vertex buffer contains an array of 3
float values aligned to 16 bytes. All buffers have to get unmapped befateGommit call to the

scene.

struct Vertex {float x,y,z,a; };
struct Triangle { int vO, v1, v2; };

Vertex* vertices = (Vertex*) rtcMapBuffer(scene,geomID,RTC_VERTEX_BUFFER);
/I fill vertices here

rtcUnmapBuffer(scene,geomID,RTC_VERTEX_BUFFER);

Triangle* triangles = (Triangle*) rtcMapBuffer(scene,geomID,RTC_INDEX_BUFFER);

/I fill triangle indices here
rtcUnmapBuffer(scene,geomID,RTC_INDEX_BUFFER);

Also see tutorial00 for an example of how to create triangle meshes.

1.5.2.2 Hair Geometry
Creates a new hair geometry,

Hair geometries are supported, which consist of multiple hairs represented as cubic bezier curves with
varying radius per control point. Individual hairs are considered to be subpixel sized which allows the

implementation to approximate the intersection calculation. This in particular means that zooming onto

one hair might show geometric artefacts.

Hair geometries are created using tteNewHairGeometry function call, and potentially deleted
using thertcDeleteGeometry function call.

6 18 Jun 2014

Embree: High Performance Ray Tracing Kernels 2.3.1 1.5.2 Geometries

The number of hair curves, number of vertices, and number of time steps (1 for normal curves, and 2 for
linear motion blur), have to get specified at construction time.

The curve indices can be set by mapping and writing to the index tRff€ (NDEX_BUFFERand the
control vertices can be set by mapping and writing into the vertex b&feC (VERTEX_ BUFFBRIn
case of linear motion blur, two vertex buffers (RTC_VERTEX BUFFERO and
RTC_VERTEX_BUFFER1) have to get filled, one for each time step.

The index buffer contains an array of 32 bit indices pointing to the ID of the first of four control vertices,
while the vertex buffer stores all control pointing of a single precision position and radius stored in X,y,z,r
order in memory. All buffers have to get unmapped befomc@ommit call to the scene.

Like for triangle meshes, thee user can also specify a geometry mask and additional flags that choose the
strategy to handle that mesh in dynamic scenes.

The following example demonstrates howto create some hair geometry:
unsigned geomID = rtcNewHairGeometry(scene,geomFlags,numCurves,numVertices,1);
struct Vertex {float x,y,z,r; };

Vertex* vertices = (Vertex*) rtcMapBuffer(scene,geomID,RTC_VERTEX_ BUFFER);
/I fill vertices here
rtcUnmapBuffer(scene,geomID,RTC_VERTEX_BUFFER);

int* triangles = (int*) rtcMapBuffer(scene,geomID,RTC_INDEX_BUFFER);
/I fill indices here
rtcUnmapBuffer(scene,geomID,RTC_INDEX_BUFFER);

Also see tutorial07 for an example of how to create and use hair geometry.

1.5.2.3 User Defined Geometry

User defined geometries make it possible to extend Embree with arbitrary types of geometry. This is
achieved by introducing arrays of user geometries as a special geometry type. These objects do not contain
a single user geometry, but a set of such geometries, each specified by an index. The user has to provide a
user data pointer, bounding function as well as user defined intersect and occluded functions to create a set
of user geometries. The user geometry to process is specified by passing its user data pointer and index to
each invokation of the bounding, intersect, and occluded function. The bounding function is used to query
the bounds of each user geometry. When performing ray queries, Embree will invoke the user intersect
(and occluded) functions to test rays for intersection (and occlusion) with the specified user defined geom-
etry.

As Embree supports different ray packet sizes, one potentially has to provide different versions of user

intersect and occluded function pointers for these packet sizes. However, the ray packet size of the called
user function always matches the packet size of the originally invoked ray query function. Consequently,

an application only operating on single rays only has to provide single ray intersect and occluded function

pointers.

18 Jun 2014 7

1.5.2 Geometries

User geometries are created using tiedlewUserGeometry function call, and potentially deleted
using thertcDeleteGeometry function call. The folling example illustrates creating an array with
two user geometries:

struct UserObject { ... };

void userBoundsFunction(UserObject* userGeom, size_t i, RTCBounds& bounds_o0) {
bounds_o = bounds of userGeomli];

}

void userintersectFunction(UserObject* userGeom, RTCRay& ray, size_ti) {
if (ray misses userGeom[i]) return;
update ray hit information;

}

void userOccludedFunction(UserObject* userGeom, RTCRay& ray, size_ti) {
if (ray misses userGeom[i]) return;
geomID = 0;

}

UserObject* userGeom = new UserObject[2];

userGeom([0] = ...

userGeom[1] = ...

unsigned geomID = rtcNewUserGeometry(scene,2);
rtcSetUserData(scene,geomID,userGeom);
rtcSetBounds(scene,geomID,userBoundsFunction);
rtcSetintersectFunction(scene,geomiD,userIntersectFunction);
rtcSetOccludedFunction (scene,geomlID,userOccludedFunction);

The user intersect functiomgerintersectFunction) and user occluded functionderOcclud-

edFunction) get as input the pointer provided throughticSetUserData function call, a ray, and

the index of the geometry to process. For ray packets, the user intersect and occluded functions also get a
pointer to a valid mask as input. The user provided functions should not modify any ray that is disabled by
that valid mask.

The user intersect function should return without modifying the ray structure if the user geometry is
missed. If the geometry is hit, it has to update the hit information of théfaay (u, v, Ng, geomID,
primID).

Also the user occluded function should return without modifying the ray structure if the user geometry is
missed. If the geometry is hit, it shoud setgeemID member of the ray to 0.

Is is supported to invoke thecintersect andrtcOccluded function calls inside such user func-
tions. It is not supported to invoke any other API call inside these user functions.

See tutorial02 for an example of how to use the user defined geometries.

8 18 Jun 2014

Embree: High Performance Ray Tracing Kernels 2.3.1 1.5.2 Geometries

1.5.2.4 Instances

Embree supports instancing of scenes inside another scene by some transformation. As the instanced scene
is stored only a single time, even if instanced to multiple locations, this feature can be used to create
extremely large scenes. Only single level instancing is supported by Embree natively, however, multi-level
instancing can principally be implemented through user geometries.

Instances are created using ttieNewlnstance function call, and potentially deleted using the
rtcDeleteGeometry function call. To instantiate a scene, one first has to generate the scene B to
instantiate. Now one can add an instance of this scene inside a scene A the following way:

unsigned instID = rtcNewlnstance(sceneA,sceneB);
rtcSetTransform(sceneA,instiD,RTC_MATRIX_COLUMN_MAJOR,&column_matrix_3x4);

One has to calitcCommit on scene B before one caltsCommit on scene A. When modifying

scene B one has to caltModified for all instances of that scene. Providing a bounding box is not
required and also not allowed. If a ray hits the instance, then the geomID and primID members of the ray
are set to the geometry ID and primitive ID of the primitive hit in scene B, and the instID member of the
ray is set to the instance ID returned fromrtieblewInstance function.

ThertcSetTransform call can be passed an affine transformation matrix with different data layouts:

Layout Description

The 3x4 float matrix is layed out in row major

RTC MATRIX ROW MAJOR
- - - form.

The 3x4 float matrix is layed out in column

RTC_MATRIX_COLUMN_MAJOR :
- - - major form.

The 3x4 float matrix is layout out in column
RTC_MATRIX_COLUMN_MAJOR_ALIGNED16 major form, with each column padded by an
additional 4th component.

Passing homogenous 4x4 matrices is possible as long as the last row is (0,0,0,1). If this homogenous
matrix is layed out in row major form, use tREC_MATRIX_ROW_MAJO&/out. If this homogenous

matrix is layed out in column major form, use R€C_MATRIX_COLUMN_MAJOR_ALIGNED16de.

In both cases, Embree will ignore the last row of the matrix.

The transformation passed tiwSetTransform transforms from the local space of the instantiated
scene, to world space.

See tutorial04 for an example of how to use instances.

18 Jun 2014 9

1.5.3 Ray Queries

1.5.3 Ray Queries

The API supports finding the closest hit of a ray segment with the sdehaefsect functions),
and determining if any hit between a ray segment and the scenee@teluded functions).

void rtcintersect (RTCScene scene, RTCRay& ray);

void rtcintersect4 (const void* valid, RTCScene scene, RTCRay4& ray);
void rtcintersect8 (const void* valid, RTCScene scene, RTCRay8& ray);
void rtcintersect16 (const void* valid, RTCScene scene, RTCRay16& ray);
void rtcOccluded (RTCScene scene, RTCRay& ray);

void rtcOccluded4 (const void* valid, RTCScene scene, RTCRay4& ray);
void rtcOccluded8 (const void* valid, RTCScene scene, RTCRay8& ray);
void rtcOccluded16 (const void* valid, RTCScene scene, RTCRay16& ray);

The ray layout to be passed to the ray tracing core is defined amthese2/rtcore_ray.h header

file. It is up to the user if he wants to use the ray structures defined in that file, or resemble the exact same
binary data layout with their own vector classes. The ray layout might change with new Embree releases
as new features get added, however, will stay constant as long as the major release number does not
change. The ray contains the following data members:

Member In/Out Description

org in ray origin

dir in ray direction (can be unnomalized)
tnear in start of ray segment

tfar in/out end of ray segment, set to hit distance after intersection
time in time used for motion blur

mask in ray mask to mask out geometries
Ng out unnormalized geometry normal

u out barycentric u-coordinate of hit

% out barycentric v-coordinate of hit
geomiD out geometry ID of hit geometry
primID out primitive 1D of hit primitive

instiD out instance ID of hit instance

This structure is in struct of array layout (SOA) for ray packets. Note th#fathe member functions as
an input and output.

In the ray packet mode (with packet size of N), the user has to provide a pointer to N 32 bit integers that
act as a ray activity mask. If one of these integers is set to 0x00000000 the corresponding ray is considered
inactive and if the integer is set to OXFFFFFFFF, the ray is considered active. Rays that are inactive will

10 18 Jun 2014

Embree: High Performance Ray Tracing Kernels 2.3.1 1.5.4 Buffer Sharing

not update any hit information. Data alignment requirements for ray query functions operating on single
rays is 16 bytes for the ray.

Data alignment requirements for query functions operating on AOS packets of 4, 8, or 16 rays, is 16, 32,
and 64 bytes respectively, for the valid mask and the ray. To operate on packets of 4 rays, the CPU has to
support SSE, to operate on packets of 8 rays, the CPU has to support AVX-256, and to operate on packets
of 16 rays, the CPU has to support the Xeon Phi instructions. Additionally, the required ISA has to be
enabled in Embree at compile time, to use the desired packet size.

Finding the closest hit distance is done throughrtbiatersect functions. These get the activity
mask, the scene, and a ray as input. The user has to initialize the rayargginréy direction dir), and

ray segmenttfear ,tfar). The ray segment has to be in the range [0,inf], thus ranges that start behind
the ray origin are not valid, but ranges can reach to infinity. The geometgetiin(D member) has to

get initialized toRTC_INVALID_GEOMETRY_IIX(-1). If the scene contains instances, also the instance
ID (instID) has to get initialized t®& TC_INVALID_GEOMETRY_ID(-1). If the scene contains linear
motion blur, also the ray timeirie) has to get initialized to a value in the range [0,1]. If ray masks are
enabled at compile time, also the ray masiagk) has to get initialized. After tracing the ray, the hit
distance tfar), geometry normalNg), local hit coordinatesu(v), geometry ID geomID), and primi-

tive ID (primID) are set. If the scene contains instances, also the instandestD () is set, if an
instance is hit. The geometry ID corresponds to the ID returned at creation time of the hit geometry, and
the primitive ID corresponds to the nth primitive of that geometry, e.g. nth triangle. The instance ID corre-
sponds to the ID returned at creation time of the instance.

The following code properly sets up a ray and traces it through the scene:

RTCRay ray;

ray.org = ray_origin;

ray.dir = ray_direction;

ray.tnear = 0.0f;

ray.tfar = inf;

ray.geomID = RTC_INVALID_GEOMETRY_ID;
ray.primiD = RTC_INVALID_GEOMETRY_ID;
ray.instID = RTC_INVALID_GEOMETRY_ID;
ray.mask = OxFFFFFFFF;

ray.time = 0.0f;

rtcintersect(scene,ray);

Testing if any geometry intersects with the ray segment is done througit@ueluded functions.
Initialization has to be done as facintersect . If some geometry got found along the ray segment,
the geometry IDdeomlID) will get set to 0. Other hit information of the ray is undefined after calling
rtcOccluded

See tutorial00 for an example of how to trace rays.

1.5.4 Buffer Sharing

Embree supports sharing of buffers with the application. Each buffer that can be mapped for a specific
geometry can also be shared with the application, by pass a pointer, offset, and stride of the application
side buffer using thecSetBuffer API function.

18 Jun 2014 11

1.5.5 Linear Motion Blur

void rtcSetBuffer(RTCScene scene, unsigned geomID, RTCBufferType type,
void* ptr, size_t offset, size_t stride);

ThertcSetBuffer function has to get called before any calittMapBuffer for that buffer, other-

wise the buffer will get allocated internally and the caltittSetBuffer will fail. The buffer has to

remain valid as long as the geometry exists, and the user is responsible to free the buffer when the geome-
try gets deleted. When a buffer is shared, it is safe to modify that buffer without mapping and unmapping
it. However, for dynamic scenes one still has to gaModified for modified geometries and the

buffer data has to stay constant fromitic€ommit call to after the last ray query invokation.

Theoffset parameter specifies a byte offset to the start of the first element asttidee parameter
specifies a byte stride between the different elements of the shared buffer. This support for offset and
stride allows the application quite some freedom in the data layout of these buffers, however, some restric-
tions apply. Index buffers always store 32 bit indices and vertex buffers always store single precision
floating point data. The start address ptr+offset and stride always have to be aligned to 4 bytes on Xeon
CPUs and 16 bytes on Xeon Phi accelerators, otherwisetdBetBuffer function will fail. For

vertex buffers, the 4 bytes after the z-coordinate of the last vertex have to be readable memory, thus
padding is required for some layouts.

The following is an example of howto create a mesh with shared index and vertex buffers:

unsigned geomID = rtcNewTriangleMesh(scene,geomFlags,numTriangles,numVertices,1);
rtcSetBuffer(scene,geomID,RTC_VERTEX_ BUFFER,vertexPtr,0,3*sizeof(float));
rtcSetBuffer(scene,geomID,RTC_INDEX_BUFFER ,indexPtr ,0,3*sizeof(int));

Sharing buffers can significantly reduce the memory required by the application, thus we recommend
using this feature. When enabling tR€C_COMPAC3cene flag, the spatial index structures of Embree
might also share the vertex buffer, resulting in even higher memory savings.

The support for offset and stride is enabled by default, but can get disabled at compile time using the
RTCORE_BUFFER_STRIDRarameter in cmake. Disabling this feature enables the default offset and
stride which increases performance of spatial index structure build, thus can be useful for dynamic
content.

1.5.5 Linear Motion Blur

A triangle mesh or hair geometry with linear motion blur support is created by setting the number of time
steps to 2 at geometry construction time. Specifying a number of time steps of 0 or larger than 2 is invalid.
For a triangle mesh or hair geometry with linear motion blur, the user has to set the
RTC_VERTEX_BUFFERGndRTC_ VERTEX_ BUFFER{ertex arrays, one for each time step. If a scene
contains geometris with linear motion blur, the user has to séimbe member of the ray to a value in

the range [0,1]. The ray will intersect the scene with the vertices of the two time steps linearly interpolated
to this specified time. Each ray can specify a different time, even inside a ray packet.

12 18 Jun 2014

Embree: High Performance Ray Tracing Kernels 2.3.1 1.5.6 Geometry Mask

1.5.6 Geometry Mask

A 32 bit geometry mask can be assigned to triangle meshs and hair geometries usat®pthask
call.

rtcSetMask(scene,geomID,mask);

Only if the bitwiseand operation of this mask with the mask stored inside the ray is not 0, primitives of
this geometry are hit by a ray. This feature can be used to disable selected triangle mesh or hair geometries
for specifically tagged rays, e.g. to disable shadow casting for some geometry. This API feature is disabled
in Embree by default at compile time, and can be enabled in cmake through the
RTCORE_ENABLE_RAY_MASg#&rameter.

1.5.7 Filter Functions

The API supports per geometry filter callback functions that are invoked for each intersection found
during thertcintersect orrtcOccluded calls. The former ones are called intersection filter func-
tions, the latter ones occlusion filter functions. The filter functions can be used to implement various
useful features, such as rejecting a hit to implement backface culling, accumulating opacity for shadow
shadows, counting the number of surfaces along a ray, collecting all hits along a ray, etc. The filter func-
tions are only supported for triangle mesh geometry, including triangle meshes with motion blur.

The filter functions provided by the user have to have the following signature:

void FilterFunc (void* userPtr, RTCRay& ray);

void FilterFunc4 (const void* valid, void* userPtr, RTCRay4& ray);
void FilterFunc8 (const void* valid, void* userPtr, RTCRay8& ray);
void FilterFunc16(const void* valid, void* userPtr, RTCRay16& ray);

Thevalid pointer points to a valid mask of the same format as expected as input by the ray query func-
tions. TheuserPtr is a user pointer optionally set per geometry throughttd8etUserData func-

tion. The ray passed to the filter function is the ray structure initially provided to the ray query function by
the user. For that reason, it is safe to extend the ray by additional data and access this data inside the filter
function (e.g. to accumulate opacity). All hit information inside the ray is valid. If the hit geometry is
instanced, thénstiD member of the ray is valid and the ray origin, direction, and geometry normal
visible through the ray are in object space. The filter function can reject a hit by settiggothéD

member of the ray tRTC_INVALID GEOMETRY_IDotherwise the hit is accepted. The filter function

is not allowed to modify the ray input datad , dir , thear , tfar), but can modify the hit data of the

ray (,v,Ng,geomID,primIiD).

The intersection filter functions for different ray types are set for some geometry of a scene using the
following API functions:

void rtcSetlntersectionFilterFunction (RTCScene scene, unsigned geomID, RTCFilterFunc func);
void rtcSetIntersectionFilterFunction4 (RTCScene scene, unsigned geomID, RTCFilterFunc4 func);
void rtcSetintersectionFilterFunction8 (RTCScene scene, unsigned geomID, RTCFilterFunc8 func);
void rtcSetIntersectionFilterFunction16(RTCScene scene, unsigned geomlID, RTCFilterFunc16 func);

18 Jun 2014 13

1.6 Embree Tutorials

These functions are invoked during execution ofrthintersect type queries of the matching ray
type. The occlusion filter functions are set using the following API functions:

void rtcSetOcclusionFilterFunction (RTCScene scene, unsigned geomID, RTCFilterFunc func);
void rtcSetOcclusionFilterFunction4 (RTCScene scene, unsigned geomID, RTCFilterFunc4 func);
void rtcSetOcclusionFilterFunction8 (RTCScene scene, unsigned geomlID, RTCFilterFunc8 func);
void rtcSetOcclusionFilterFunction16 (RTCScene scene, unsigned geomID, RTCFilterFunc16 func);

See tutorial05 for an example of how to use the filter functions.

1.6 Embree Tutorials

Embree comes with a set of tutorials aimed at helping users understand how embree can be used and
extended. All tutorials exist in an ISPC and C version to demonstrate the two versions of the API. Look

for files namesgutorialXX_device.ispc for the ISPC implementation of the tutorial, and files
namectutorialXX_device.cpp for the single ray C version of the tutorial. To start the C++ version
use thetutorialXX executables, to start the ISPC version usdutmial XX _ispc executables.

You can select an initial camera using the -vp (camera position), -vi (camera lookat point), -vu (camera up
vector), and -fov (vertical field of view) command line parameters:

Jtutorial00 -vp 10 10 10-vi0 00

You can select the initial windows size using the -size command line parameter, or start the tutorials in
fullscreen using the -fullscreen parameter:

Jtutorial00 -size 1024 1024
Jtutorial00 -fullscreen

Implementation specific parameters can be passed to the ray tracing core through the -rtcore command line
parameter, e.g.:

Jtutorial00 -rtcore verbose=2,threads=1,accel=bvh4.triangle1

The navigation in the interactive display mode follows the camera orbit model, where the camera revolves
around the current center of interest. With the left mouse button you can rotate around the center of inter-
est (the point initially set with -vi). Holding Control pressed while klicking the left mouse button rotates
the camera around its location. You can also use the arrow keys for navigation.

You can use the following keys:

F1
Default shading
F2
Gray EyeLight shading
F3
Ambient occlusion shading
F4
UV Coordinate visualization

14 18 Jun 2014

Embree: High Performance Ray Tracing Kernels 2.3.1 1.6.1 Tutorial00

F5
Geometry normal visualization
F6
Geometry ID visualization
F7
Geometry ID and Primitive ID visualization
F8
Simple shading with 16 rays per pixel for benchmarking.
F9
Switches to render cost visualization. Pressing again reduces brightness.
F10
Switches to render cost visualization. Pressing again increases brightness.
f
Enters or leaves full screen mode.
c

Prints camera parameters.
ESC
Exists the tutorial.

Exists the tutorial.

1.6.1 TutorialO0O

This tutorial demonstrates the creation of a static cube and ground
plane using triangle meshes. It also demonstrates the use of the
rtcintersect andrtcOccluded functions to render primary

of the hit primitive.

1.6.2 TutorialO1

This tutorial demonstrates the creation of a dynamic scene, consisting
ETRY_DEFORMABLE flag, which allows Embree to use a refitting
strategy for these spheres, the other half uses the RTC_GEOME-
TRY_DYNAMIC flag, causing a rebuild of their spatial data structure

geometry.

18 Jun 2014 15

visibility and hard shadows. The cube sides are colored based on the ID

of several deformed spheres. Half of the spheres use the RTC_GEOM-

each frame. The spheres are colored based on the ID of the hit sphere

1.6.3 Tutorial02

1.6.3 Tutorial02

This tutorial shows the use of user defined geometry, to re-implement
instancing and to add analytic spheres. A two level scene is created,

) L & with a triangle mesh as ground plane, and several user geometries, that
‘F)‘ ‘ instance other scenes with a small number of spheres of different kind.
The spheres are colored using the instance ID and geometry ID of the

hit sphere, to demonstrate how the same geometry, instanced in differ-
ent ways can be distinguished.

1.6.4 Tutorial0O3

This tutorial demonstrates a simple OBJ viewer that traces primary
visibility rays only. A scene consisting of multiple meshes is created,
each mesh sharing the index and vertex buffer with the application.
Demonstrated is also how to support additional per vertex data, such as
shading normals.

1.6.5 TutorialO4

This tutorial demonstrates the in-build instancing feature of Embree, by
instancing a number of other scenes build from triangulated spheres.

)) @
‘r)l L.‘ The spheres are again colored using the instance ID and geometry ID
of the hit sphere, to demonstrate how the same geometry, instanced in

' different ways can be distinguished.

1.6.6 Tutorial05

16 18 Jun 2014

Embree: High Performance Ray Tracing Kernels 2.3.1 1.6.7 Tutorial06

This tutorial demonstrates the use of filter callback functions to effi-
ciently implement transparent objects. The filter function used for
primary rays, lets the ray pass through the geometry if it is entirely
transparent. Otherwise the shading loop handles the transparency prop-
erly, by potentially shooting secondary rays. The filter function used

for shadow rays accumulates the transparency of all surfaces along the
ray, and terminates traversal if an opaque occluder is hit.

1.6.7 TutorialO6

This tutorial is a simple path tracer, building on tutorial03.

1.6.8 Tutorial07

This tutorial demonstrates the use of the hair geometry to render a hair-
ball.

1.6.9 Embree Support and Contact

For questions and bug reports please write us at embree_support@intel.com.

To receive notifications of updates and new features of Embree please subscrije to the Embrge mailing
list

18 Jun 2014 17

https://groups.google.com/d/forum/embree/
https://groups.google.com/d/forum/embree/

1.6.9 Embree Support and Contact

For information about compiler optimizations, see[our Optimization Notice.

18 18 Jun 2014

http://software.intel.com/en-us/articles/optimization-notice#opt-en

	1€€Embree: High Performance Ray Tracing Kernels 2.3.1
	1.1€€Embree Overview
	1.2€€Supported Platforms
	1.3€€Installing Embree on Windows
	1.4€€Installing Embree on Linux and Mac OS X
	1.5€€Embree API
	1.5.1€€Scene
	1.5.2€€Geometries
	1.5.2.1€€Triangle Meshes
	1.5.2.2€€Hair Geometry
	1.5.2.3€€User Defined Geometry
	1.5.2.4€€Instances

	1.5.3€€Ray Queries
	1.5.4€€Buffer Sharing
	1.5.5€€Linear Motion Blur
	1.5.6€€Geometry Mask
	1.5.7€€Filter Functions

	1.6€€Embree Tutorials
	1.6.1€€Tutorial00
	1.6.2€€Tutorial01
	1.6.3€€Tutorial02
	1.6.4€€Tutorial03
	1.6.5€€Tutorial04
	1.6.6€€Tutorial05
	1.6.7€€Tutorial06
	1.6.8€€Tutorial07
	1.6.9€€Embree Support and Contact

