
EuroCG 2015, Ljubljana, Slovenia, March 16–18, 2015

Dynamic Convex Hull for Simple Polygonal Chains
in Constant Amortized Time per Update

Norbert Bus∗ Lilian Buzer∗

Abstract

We present a new algorithm to construct a dynamic
convex hull in the Euclidean plane, supporting inser-
tion and deletion of points. Both operations require
amortized constant time. At each step the vertices of
the convex hull are accessible in constant time. The
algorithm is on-line, does not require prior knowledge
of all the points. The only assumptions are that the
points have to be located on a simple polygonal chain
and that the insertions and deletions must be carried
out in the order induced by the polygonal chain.

1 Introduction

The convex hull of a set of n points in a Euclidean
space is the smallest convex set containing all the
points. Constructing the convex hull of a point set
is a fundamental problem in computational geometry.
It has applications in, e.g., pattern recognition, image
processing and micro-magnetic analysis [2, 6]. Many
problems can be reduced to determining the convex
hull of a point set, such as Delaunay triangulation
and half space intersection [5]. Therefore developing
robust and efficient algorithms for the core problem
has received much attention. If one considers the real-
RAM model, an optimal output sensitive algorithm
to construct the convex hull of n points in a plane
was published in [7] having O(n log h) time complexity
where h is the output size. If the point set is a simple
polygonal chain, the best algorithm, a result of Melk-
man, runs in linear time [1]. If one requires the data
structure to be dynamic, namely to handle insertions
and deletions of arbitrary points an optimal algorithm
requiring O(log n) time for both operations was pro-
posed in [3]. Changing the computational model to
the word-RAM model and using Graham’s scan [8] to
construct a convex hull the running time is essentially
the time to sort the points, taking, e.g., O(n log log n)
time [9]. Dynamic data structures supporting dele-
tion and insertion in the word-RAM model require an
optimal O(logn

log logn) time for both operations assuming

that word length is Θ(log n), see [4].

∗Université Paris-Est, LIGM, A3SI-ESIEE, France, {busn,
buzerl}@esiee.fr

Our contribution In this paper we give an on-line
algorithm to construct the dynamic convex hull of a
simple polygonal chain in the Euclidean plane sup-
porting deletion of points from the back of the chain
and insertion of points in the front of the chain. Both
operations require amortized constant time consid-
ering the real-RAM model. The main idea of the
algorithm is to maintain two convex hulls, one for
efficiently handling insertions and one for deletions.
These two hulls constitute the convex hull of the
polygonal chain.

2 Overview of our algorithm

Our algorithm works in phases. For a precise for-
mulation let us first define some necessary notations.
A polygonal chain S in the Euclidean plane, with
n vertices, is defined as an ordered list of vertices
S = (p1, p2, . . . , pn) such that any two consecutive
vertices, pi and pi+1 are connected by a line segment.
A polygonal chain is called simple when it is not self-
intersecting. For simplicity, we assume that the points
are in general position. Our algorithm handles inser-
tion and deletion of points into the current convex hull
in the order induced by S. This results in the fact that
the current convex hull always contains a contiguous
subchain of S, let us denote it by Sj

i = (pi, · · · , pj)
and the points are effectively inserted/deleted in a
FIFO manner. Let us denote the convex hull of Sj

i

with Cj
i . Therefore, given a convex hull Cj

i , inserting

a point results in Cj+1
i while removing the first point

results in Cj
i+1.

At the beginning of each phase, we initialize a sim-
ple data structure called the phase convex hull that
maintains the representation of the convex hull of a
subrange of the polygonal chain. Each phase handles
an arbitrary number of insertions and handles deleting
the points that were present when the phase started.
Assuming that the phase convex hull first covered Sb

a

this means we can delete the points pa . . . pb. A phase
ends, when we first delete a point that was not cov-
ered by the initial convex hull. After that, a new phase
starts and we initialize a new phase convex hull. See
Figure 1.

We state the main result of our algorithm in Theo-
rem 1.

This is an extended abstract of a presentation given at EuroCG 2015. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

31st European Workshop on Computational Geometry, 2015

Cb
a → Cb+1

a → · · · → Cc
b −→ Cc

b+1 → Cc
b+2 → · · · → Cd

c

phase starting with Sb
a

phase starting with Sc
b+1

initialize new
phase convex hull

Figure 1: Example of two phases

Theorem 1 The amortized time complexity of inser-
tion and deletion of points in a convex hull of a simple
polygonal chain is constant.

Proof. Assume that each point has been inserted and
later removed. In Section 6 we show that the i − th
phase runs in O(ki + li) time where ki is the num-
ber of insertions in the phase and li is the number
of deletions. During the whole algorithm each point
has been inserted and deleted exactly once hence there
have been n insertions and n deletions overall. There-
fore the overall running time of the phases is O(n),
yielding the desired result. �

3 Convex hulls

In this section we introduce the phase convex hull
representing the convex hull of the polygonal chain.
Furthermore, we describe two convex hulls that are
maintained during the phase. These two hulls’ pur-
pose is to enable that insertion and deletion of points
for the phase convex hull run in constant amortized
time. We suggest that the reader is familiar with the
Melkman algorithm [1] as our method builds heavily
on it. Briefly, the method builds the convex hull of
a polygonal chain by iteratively (in the proper order)
adding the points to the convex hull and modifying
it as necessary. At the beginning of the phase let Sb

a

be the current polygonal chain while at the end let it
be Sc

b . Let us denote by Sj
i the polygonal chain at

an arbitrary step during the phase and Cj
i the corre-

sponding convex hull.

Phase convex hull The phase convex hull denoted
by C∗ is the data structure representing the convex
hull Cj

i , containing all of its points in two dequeues.
Every point is contained in exactly one of the two de-
queues except for two: the front of both dequeues refer
to the same point of the subchain, the one contained
in Cj

i with highest index and similarly, the back of
both dequeues refer to the same point of the subchain,
the one contained in Cj

i with lowest index. We refer to
the front of both dequeues as front opening and to the
back as back opening. Connecting the two dequeues
gives the ordered circular list of points in Cj

i . See
Figure 2. Clearly, if one considers the back opening
to be closed (i.e., as if being glued together, remov-
ing the duplicate copy of the back point), one has the

data structure used in the Melkman algorithm. At
the beginning of the phase C∗ is built for Sb

a using
the Melkman algorithm.

pi
pb pj−1pj

deque

Figure 2: The two dequeues (blue and yellow) consti-
tuting C∗. For clarity we include one schematically.
In green and red we depict C+ and C− respectively.

The following data structures aid to handle inser-
tion or more importantly deletion of points (since the
phase convex hull itself could handle insertions).

Incremental convex hull The incremental convex
hull is a convex hull incrementally built with the
Melkman algorithm for the points in the polygonal
chain added after the initialization of the phase. Let
us denote it by C+. At any step Sj

i , formally, C+ is

the same as Cj
b+1.

Decremental convex hull The decremental convex
hull is a convex hull built with the Melkman algo-
rithm for the points present at the beginning of the
phase but according to the reverse order of the points.
Let us denote it by C−. At each deletion a point is
removed from C−. At any step Sj

i , formally, C− is
the convex hull of the points Si

b (note the reverse or-
der). This data structure has to maintain additional
information that will be used for efficient deletion of
points. First, while creating C−, for each point in Sa

b ,
the list of points that were removed from the previous
convex hull should be kept. Let us call these points
the history of a point. This enables that the algo-
rithm can be ‘rewound’, i.e, the points of C− can be
deleted in a FILO order. As C− was built in the re-
verse order this is exactly the deletion order we need.
Second, the polygonal regions defined by Cj

k\C
j
k+1 for

a ≤ k ≤ b, in other words the difference between con-
secutive convex hulls in the Melkman algorithm for
building C−, have to be kept. At the beginnning of
each phase we build the decremental convex hull for
Sa
b . In Figure 3 we show the regions where the red

polygonal chain is Sb
a. The green line corresponds to

the polygonal chain of the points inserted during the
phase.

We will need a simple property of the regions,
namely that they form an ordered partitioning of the
plane that enables a certain operation. See Lemma 2.

EuroCG 2015, Ljubljana, Slovenia, March 16–18, 2015

7

6

5

4
3

2

1

pa

pb
pc

Figure 3: Regions.

Lemma 2 While constructing C− for Sb
a one can cre-

ate an ordered list of regions in O(b − a) time. Such
a partitioning enables the maintenance of the highest
ordered region that contains any point inserted dur-
ing the phase. This operation takes O(c− b) time for
a phase.

In Figure 3 the highest ordered region containing a
point inserted in the phase is region no.7. The lemma
is a straightforward consequence of the Melkman al-
gorithm as given the current highest ordered region
containing an inserted point one only has to check
whether a newly inserted point is contained in the re-
gion following (in order) the current one. One has to
be careful when adding the point pb+1 as there was no
highest ordered region before, but this case is trivial.

4 Insertion

In this section we describe the method to handle the
insertion of pj+1 into the convex hull of Sj

i .
In order to insert the point pj+1 into C∗ it is suf-

ficient to do one step of the Melkman algorithm at
the front opening of the dequeues. For that, consider
the back opening of C∗ to be closed, i.e., the two de-
queues behave like one. One has to be cautious when
the Melkman algorithm deletes the point being the
back opening as the new back opening should be by
our definition the point in Cj

i with least index. C+

has to to be updated with pj+1 as well, which is done
using the Melkman algorithm. Moreover, as long as
the front opening is one of the points in C− one has to
update the highest ordered region of C− containing
any inserted point.

5 Deletion

In this section we describe the deletion of the point
pi from Sj

i . We will need a property concerning the
points in the phase convex hull C∗. Note, that the
points of C∗ either belong to C+ or C−. The following
lemma describes how the points’ distribution (with

respect to whether they belong to C+ or C−) changes
during the execution of the operations in a phase. It
states that there cannot be arbitrary distributions,
e.g., points from C+ and C− in an alternating order.

Lemma 3 The points in C∗ are partitioned into con-
tiguous ranges according to whether they belonging
to C− or C+. At any step in a phase there are at
most two such partitions, one containing points of
C+ and one containing points of C−. The partition-
ing changes in a specific pattern during a phase: at
the beginning there are only points from C− in C∗;
then two partitions; finally only points from C+ are
located in C∗.

The fact that C∗ is partitioned into at most two
parts is a consequence of the simplicity of the polygo-
nal chain. The strict ordering also follows easily since
C+ is monotonically growing while C− is monotoni-
cally shrinking.

To delete the point pi there are several scenarios
that have to be handled differently. As a common
point in all cases pi has to be removed from C− and
its history has to be added to C− (‘rewinding’ the
Melkman algorithm). Let us first group the different
cases according to Lemma 3.

Case 1: If the phase convex hull contains only
points from C− then one can simply remove pi from
C∗ and add the points of the history of pi to C∗. This
is valid as long as there shall be no point of C+ added
to C∗. The highest ordered region is maintained ex-
actly for checking this. As long as the deleted region
has no points assigned to it we can proceed as ex-
plained. If it is not empty then an expensive operation
is required, namely to add all the points of C+ to C∗.
This can be done with the Melkman algorithm con-
sidering the back opening to be closed. Even though
this operation might require linear time in the number
of insertions it can happen only once for each phase
therefore its amortized time complexity is constant.

Case 2: If the phase convex hull contains points
from both C+ and C−, we have the most complicated
case. Obviously the point pi to be removed is in C−.
Let us denote the neighbors of pi in C∗ by x and y.
The edge between x and y would become an edge of
C∗ if there are no points in the triangle defined by
pi, x, y. But usually this is not the case therefore one
has to create new edges of C∗ that correspond to the
vertices located in this triangle. Adding these points
(and at the same time checking if there are points
inside the triangle) is done as follows. We further
categorize this case into three sub cases depending on
the neighbors of pi.
Case 2a: If both x and y belong to C− then clearly

C∗ can only be modified by the points from the history
of the currently deleted point pi. In such a situation
using the Melkman algorithm one can add the ordered
history of pi to C∗.

31st European Workshop on Computational Geometry, 2015

Case 2b: If one point, e.g., x belongs to C+ then
there might be points of C+ that have to be inserted
into C∗. In this case first the history of pi should be
inserted into C∗ and then starting from x we shall
add the vertices of C+ in the circular order (starting
with the neighbor of x not contained in C∗) using the
Melkman algorithm but just as long as they create
new vertices on C∗. One can show that if a point of
C+ is inside C∗ then there are no other points that
shall be inserted.

Case 2c: If both x and y belong to C+ then a
similar process has to be carried out namely first in-
serting the points of the history and then the vertices
of C+ in the proper circular order starting from x and
y. Note that x and y define two different parts of C+

that have to be inserted into C∗ and to maintain a
low running time one has to insert points from these
two parts in an alternating order (one cannot pro-
ceed with points from the part of x after finishing the
points starting from y). When a point remains inside
the phase convex hull we can finish inserting points
from its part. See Figure 4 for a schematic illustra-
tion of the process. In order to be able to utilize the
Melkman algorithm it has to be true that the added
points belong to a simple polygonal chain, otherwise
using Melkman would be impossible. This can be en-
sured by using some auxiliary points thats purpose is
only to make the path non self intersecting.

Case 3: If C∗ contains only points of C+ than
C− ⊂ C+ therefore there is no change in C∗.

How to add auxiliary points and the proof of cor-
rectness, e.g, why is it sufficient to add only the his-
tory of pi in Case 2 is left for the full paper.

pi pjpb

y

x

Figure 4: Deleting the point pi. Solid blue lines de-
note the convex hull after deleting pi. Gray arrows
denote the points that have to be inserted into C∗.

6 Complexity

Let us now show that each phase takes time linear in
the number of insertions and deletions. Let us denote
them by k and l respectively.
Initialization: Clearly, initializing C∗, C+ and

C− is linear in the number of points present at the
beginning of the phase since we only utilize a modi-

fied Melkman algorithm. This indeed is the same as
the number of points deleted in the phase. Therefore
the complexity of initialization is O(l).

Insertion: Using the Melkman algorithm for both
the phase convex hull and the incremental convex hull
takes O(k) time. During insertion of points one has
to also maintain the highest ordered region containing
any point of C+. This can be done in O(k) time.

Deletion: Clearly, during executing the deletions,
the number of points inserted into C∗ using the Melk-
man algorithm is not more than the total size of his-
tory of points in C− which is O(l) and the points of
C+ added to C∗ which is less than O(k) as no point
can reappear on C∗ due to the monotonicity of the
operations.

This results in the following theorem.

Theorem 4 The running time of one phase is O(k+
l) given that there are k insertions and l deletions.

7 Conclusion

We have presented an algorithm that handles inser-
tion and deletion of points from/into the convex hull
of a simple polygonal chain. Each operation takes
amortized constant time. The operations are carried
out in a FIFO manner, namely that points are in-
serted on one end of the chain while points are deleted
from the other. It would be interesting to see if this
constraint can be removed, namely that points can be
inserted/deleted on both ends of the chain.

References

[1] A. A. Melkman. On-line construction of the convex
hull of a simple polyline Information Processing Let-
ters, 1987.

[2] F. P. Preparata and M. I. Shamos. Computational
geometry: an introduction Springer-Verlag, 1985.

[3] G. S. Brodal and R. Jacob. Dynamic Planar Convex
Hull FOCS, 2002.

[4] E. D. Demaine and M. Patrascu. Tight Bounds for
Dynamic Convex Hull Queries (Again) SOCG, 2007.

[5] F. Aurenhammer. Voronoi Diagrams – a Survey of a
Fundamental Geometric Data Structure ACM Com-
puting Surveys, 1991.

[6] D. G. Porter, E. Glavinas, P. Dhagat,
J. A. O’Sullivan, R. S. Indeck and M. W. Muller. Ir-
regular grain structure in micromagnetic simulation
Journal of Applied Physics, 1996.

[7] T. M. Chan. Optimal Output-Sensitive Convex Hull
Algorithms in Two and Three Dimensions Discrete
and Computational Geometry, 1996.

[8] R. L. Graham. An Efficient Algorithm for Determin-
ing the Convex Hull of a Finite Planar Set Informa-
tion Processing Letters, 1972.

[9] Y. Han. Deterministic sorting in O(n log logn) time
and linear space Journal of Algorithms, 2004.

