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Abstract
Over the past several decades there has been steady progress towards the goal of polynomial-time
approximation schemes (PTAS) for fundamental geometric combinatorial optimization problems.
A foremost example is the geometric hitting set problem: given a set P of points and a set D
of geometric objects, compute the minimum-sized subset of P that hits all objects in D. For
the case where D is a set of disks in the plane, a PTAS was finally achieved in 2010, with a
surprisingly simple algorithm based on local-search. Since then, local-search has turned out to
be a powerful algorithmic approach towards achieving good approximation ratios for geometric
problems (for geometric independent-set problem, for dominating sets, for the terrain guarding
problem and several others).

Unfortunately all these algorithms have the same limitation: local search is able to give
a PTAS, but with large running times. That leaves open the question of whether a better
understanding – both combinatorial and algorithmic – of local search and the problem can give
a better approximation ratio in a more reasonable time. In this paper, we investigate this
question for hitting sets for disks in the plane. We present tight approximation bounds for (3, 2)-
local search and give an (8 + ε)-approximation algorithm with expected running time Õ(n2.34);
the previous-best result achieving a similar approximation ratio gave a 10-approximation in
time O(n15) – that too just for unit disks. The techniques and ideas generalize to (4, 3) local
search. Furthermore, as mentioned earlier, local-search has been used for several other geometric
optimization problems; for all these problems our results show that (3, 2) local search gives an
8-approximation and no better1. Similarly (4, 3)-local search gives a 5-approximation for all these
problems.
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1 Introduction

The minimum hitting set problem is one the most fundamental combinatorial optimization
problems: given a range space (P,D) consisting of a set P and a set D of subsets of P
called the ranges, the task is to compute the smallest subset S ⊆ P that has a non-empty
intersection with each of the ranges in D. If there are no restrictions on the set system
D, then it is known that it is NP-hard to approximate the minimum hitting set within a
logarithmic factor of the optimal [24]. A natural occurrence of the hitting set problem occurs
when the range space D is derived from geometry. Unfortunately, for most natural geometric
range spaces, computing the minimum-sized hitting set remains NP-hard. For example,
even the (relatively) simple case where D is a set of unit disks in the plane is strongly
NP-hard [18]. Therefore fast algorithms for computing provably good approximate hitting
sets for geometric range spaces have been intensively studied for the past three decades.
Since there is little hope of computing the minimum-sized hitting set for general geometric
problems in polynomial time, effort has turned to approximating the optimal solution.

In this paper we will consider a fundamental case for geometric hitting sets, where the
geometric objects are arbitrary radius disks in the plane (or halfspaces in R3). This has been
the subject of a long line of investigation, for more than two decades. The case when all the
disks have the same radius is easier, and has been studied in a series of works [9, 6, 10, 12, 13].
The problem becomes harder when the disk radii can be arbitrary. A first break-through
for this problem came in 1994, when Bronnimann and Goodrich [8] proved the following
interesting connection between the hitting-set problem, and ε-nets2: let (P,D) be a range-
space for which we want to compute a minimum hitting set. If one can compute an ε-net of
size c/ε for the ε-net problem for (P,D) in polynomial time, then one can compute a hitting
set of size at most c · opt for (P,D), where opt is the size of the optimal (smallest) hitting
set, in polynomial time. A shorter, simpler proof was given by Even et al. [15]. Recently,
Agarwal and Pan [5] presented an algorithm that can compute hitting-sets for disks from
ε-nets in time O(n log6 n).

Local search. There is a fundamental limitation of the above technique: it cannot give
better than constant-factor approximations. The reason is that the technique reduces the
problem of computing a minimum size hitting set to the problem of computing a minimum
sized ε-net. And it is known that for some constant c ≥ 2, there do not exist ε-nets of size
smaller than c/ε – even for halfspaces in 2D. This limitation was the main barrier towards
better quality algorithms until the usefulness of local search algorithms was introduced.

There has been recent progress in breaking or improving the constant-approximation
barriers for many geometric problems using very similar applications of local-search; e.g.,
independent set of non-piercing rectangles [4], independent set of pseudodisks [11], dominating
sets in disk intersection graphs [17], terrain guarding problem [19] and several other problems.
For the hitting set problem on (P,D), local-search works as follows: start with any hitting
set S ⊆ P , and repeatedly decrease the size of S, if possible, by replacing k points of S with
< k points of P \ S. Call such an algorithm a (k, k − 1)-local search algorithm. Mustafa and
Ray [22] showed that a (k, k − 1)-local search algorithm for the hitting set problem gives a
(1+c/

√
k)-approximation, for a fixed constant c, when the ranges are disks, or more generally,

pseudo-disks in R2. The running time of their algorithm to compute a (1 + ε)-approximation
is O(nO(1/ε2)).

2 Given (P,D), an ε-net is a subset S ⊆ P such that D ∩ S 6= ∅ for all D ∈ D with |D ∩ P | ≥ εn.
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Congruent disks
Quality Time

Călinsecu et al. [9] 108 O(n2)
Ambhul et al. [6] 72 O(n2)
Carmi et al. [10] 38 O(n6)
Claude et al. [12] 22 O(n6)
Fraser et al. [13] 18 O(n2)
Acharyya et al. [1] (9 + ε) O(n3+12/ε)

Arbitrary disks
Quality Time

Bronniman et al. [8] O(1) O(n3)
Mustafa et al. [22] (1 + ε) nO(1/ε2)

Agarwal et al. [3] O(logn) Õ(n)
Agarwal et al. [5] O(1) Õ(n)
This paper 8 + ε Õ(n7/3)
This paper 5 + ε Õ(n3.75)

Table 1 Summary of previous work.

Our Contributions. Both these approaches have to be evaluated on the questions of com-
putational efficiency as well as approximation quality. In spite of all the progress, there
remains a large gap between quality and efficiency – mainly due to the ugly trade-offs
between running times and approximation factors; see Table 1 for the current state of
the art. The algorithm of Agarwal and Pan [5] that rounds via ε-nets gives an Õ(n)-time
algorithm, but the constant in the approximation depends on the constant in the size of
ε-nets, which is large. For disks in the plane, the current best size of ε-net is at least 40/ε [23],
yielding at best a 40-approximation algorithm. At the other end, the (k, k − 1)-local search
algorithm [22] can compute solutions arbitrarily close to the optimal, but it is extremely
inefficient, even for reasonable approximation factors. For example, it takes time O(n66)
to compute a 3-approximation [16]. Furthermore, note that any attempts at progress on
improving local search must take into account that the hitting set problem for even unit
disks is W [1]-hard [20]; so it is unlikely that algorithms exist that do not have a dependency
on 1/ε in the exponent.

Therefore in this paper we undertake a closer study of (k, k − 1)-local search for small
values of k. Table 1 states our contributions. As our first result, we determine the exact
limits of (3, 2)-local search:

I Theorem (Proof in Section 2). A (3, 2)-local search algorithm returns a 8-approximation to
the minimum hitting set. Furthermore, there exist a set P of points and a set D of disks
where (3, 2) local-search does not return hitting-sets of size less than 8 factor of the optimal
hitting set.

Remark: In fact this immediately implies improved bounds for many other local search
algorithms; e.g., it implies that the (3, 2)-local search gives 8-approximation to the independent
set of pseudodisks, dominating sets in disk intersection graphs, terrain guarding problem.
We leave the details of these further applications to the full paper.

A straightforward algorithm for (3, 2)-local search proceeds as follows: each (3, 2) im-
provement step tries all O(n5) 5-tuples, and for each checks if it is indeed an improvement in
time O(n). The total number of steps for the whole algorithm can be O(n), giving a O(n7)
naive running time. We show how to perform this search more efficiently:

I Theorem (Proof in Section 3). A (3, 2)-local search can be performed in expected time
O(n2.34).

In fact, these techniques can be generalized for larger values of k. For example, it can be
shown that (4, 3)-local search gives a 5-approximation in time Õ(n3.75). As the details are
similar, we leave the proof for the full version of the paper.
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2 Analysis of Quality for Local Search

Let R be a region in the plane. We say that a point p ∈ R2 hits R if p ∈ R, and that a set of
points X hits a set of regions R if each region in R is hit by some point in X. We denote
by H(P,R) the set system (P, {R ∩ P : R ∈ R}) induced by P and R. A hitting set for
H(P,R) is a subset of P which hits R. A hitting set of the smallest cardinality is called the
minimum hitting set and its size is denoted Opt(P,R) (or simply Opt when it is clear from
the context). From now onwards, P denotes a set of points and D denotes a set of (circular)
disks in the plane. Our goal is to compute a hitting set for H(P,D) of a small size efficiently.

The analysis of the approximation factor achieved by a (k, k− 1)-local search depends on
the following theorem on planar bipartite graphs.

I Theorem 1. [11, 22] Let G = (R,B,E) be a bipartite planar graph on red and blue vertex
sets R and B, such that for every subset B′ ⊆ B of size at most k, where k is a large enough
number, |NG(B′)| ≥ |B′|. Then, |B| ≤ (1 + c/

√
k) |R|, where c is a constant.

Here NG(B′) denotes the set of neighbors of the vertices in B′ in G. The proof of the above
theorem, which relies on planar graph separators, requires k to be quite large, thereby limiting
the practical utility of the above theorem. A priori, it is not clear whether the theorems
holds at all for small values of k. For instance, one can easily see that for k = 2 there is no
upper bound on |B|/|R| (e.g., consider complete bipartite graph where B is arbitrarily large
and |R| = 2). However, for k = 3, we show a small bound of 8 on |B|/|R|, and then prove
that it is, in fact, optimal.

I Theorem 2. Let G = (R,B,E) be a bipartite planar graph on red and blue vertex sets
R and B, such that for every subset B′ ⊆ B of size at most 3, |NG(B′)| ≥ |B′|. Then,
|B| ≤ 8 |R| and this bound is tight.

Proof. Let nb = |B| and nr = |R|. Our goal is to prove that nb ≤ 8nr. Note that no
vertex in B can have degree 0, otherwise the neighborhood of such a vertex is of size 0,
violating the conditions of the theorem. We make a new graph G′ by adding edges in G
to all vertices of B which have degree 1 in G. This can always be done while maintaining
the planarity and bipartiteness of the graph as any such vertex v must lie in a face which
has at least two vertices of R, at least one of which is not adjacent to v. Thus in G′ every
vertex in B has degree at least 2. Let nb2 be the number of vertices of B which have degree
2 and nb≥3 = nb − nb2 be the number of vertices of B which have degree at least 3 in G′.
Since G′ is planar and bipartite the number of edges in G′ ≤ 2(nb + nr). This implies that
2nb2 + 3nb≥3 ≤ 2nb + 2nr. Since nb = nb2 + nb≥3 , we obtain nb≥3 ≤ 2nr.

We now show that nb2 ≤ 6nr. To do that we construct a graph H with vertex set R as
follows: two vertices r1 ∈ R and r2 ∈ R are adjacent in H iff there is at least one vertex b ∈ B
of degree 2 which is adjacent to both r1 and r2 in G′. Note that H is planar since the edge
between r1 and r2 can be routed via one such b. Note that for the same pair {r1, r2} there
cannot be three vertices b1, b2, b3 ∈ B of degree 2 each that are adjacent to both r1 and r2
since in that case the neighborhood of the set {b1, b2, b3} is of size 2 violating the conditions of
the theorem. Therefore, each vertex b ∈ B of degree 2 corresponds to an edge in H and each
edge has at most two vertices in B that correspond to it. Since the number of edges in H is at
most 3|R| = 3nr, we conclude that nb2 ≤ 6nr. Thus nb = nb2 + nb≥3 ≤ 6nr + 2nr = 8nr. J

We now show that the bound given above is tight. However, that still leaves open the
possibility that, by exploiting other properties of disks, a (3, 2)-local search could give a
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better approximation for the problem of computing minimum hitting sets for disks in the
plane. The following theorem rules this out.

I Theorem 3. For any δ > 0, there exists an integer n0 such that one can construct a set
D of disks in the plane, a set of points P , |P | ≥ n0, and a subset B ⊆ P s.t. i)B is a hitting
set for H(P,D), ii) |B| ≥ (8− δ)Opt and iii) there are no subsets X ⊆ B and Y ⊆ P \B,
|Y | < |X| ≤ 3, s.t. (B \X) ∪ Y is a hitting set for H(P,D).

Proof. We first construct a bipartite graph G = (R,B,E) that satisfies the conditions of
Theorem 2 and |B| ≥ (8− δ)|R|. Let L be the triangular lattice, and take a large equilateral
triangle ∆ aligned with the edges of L (so that L ∩∆ triangulates ∆) and containing many
faces of the lattice. Then replace each face of the lattice by the block of the type shown in
Figure 1(a). The corner vertices (unshaded) of the block map to the corner vertices of the
face, while the other vertices (shaded) in the block lie in the interior of the face. Let R be the
set of vertices of L lying in ∆ and let B be the set of vertices lying in the interior of the faces
in L ∩∆. The blocks together define a bipartite graph (see Figure 1(b) for a small example
with four blocks put together). Note that each face in L ∩∆ contains four points of B, and
if ∆ is large enough, the number of faces of L in ∆ is nearly twice the number of vertices of
L in ∆. The size of ∆ can be chosen, depending on δ, such that the number of faces of L is
at least (2− δ/4) times the number of vertices of L. Thus we get that |B| ≥ (8− δ)|R|. It
can be verified by inspection that there is no subset of B of size at most 3 with a smaller
neighborhood. This shows that the bound in Theorem 2 is tight within additive constants.

Now, we extend G to a triangulation by including the dotted edges in the blocks. Note
that there are some dotted edges going between blocks. We also put an additional vertex
in the outer face and connect it to all vertices in the outer face of G (i.e. we stellate the
outer face). The resulting graph, call it Ξ, is triangulated (i.e., each face is of size 3) and
furthermore it is 4-connected since, as can be verified by inspection, there is no separating
triangle (a non-facial cycle of length 3). By a theorem of Dillencourt and Smith (Theorem 3.5
in [14]), there exists an embedding of Ξ in the plane so that Ξ is the Delaunay triangulation of
its vertices. Abusing notation, we refer to the embedding as Ξ and we refer to the embedding
of a vertex v in Ξ as v.

Let R and B thus be the two sets of points. We set P = R ∪ B, and construct D by
taking for each edge e in G a disk that contains exactly the two end points of e among all
the vertices in Ξ. This is possible because Ξ is now a Delaunay triangulation of the points in
P . By construction, each disk in D contains exactly one point from each of the sets R and
B and thus both the sets are hitting sets for H(P,D). Since Opt is the size of the smallest
hitting set, Opt ≤ |R| and therefore |B| ≥ (8− δ)Opt. Consider a local improvement step
where we seek to decrease the size of the hitting set B by removing some subset X ⊆ B of
size at most 3 and adding a smaller set Y outside B (i.e., Y ⊆ R) so that (B \X) ∪ Y is a
hitting set for D. Let x be one of the points in X. Observe that then all neighbors of x in G
must be in Y since for each neighbor y of x, there is a disk in D which contains only the two
points x and y among all the points in R ∪ B. This means that |Y | ≥ |NG(X)|. Since for
any X of size at most 3, |NG(X)| ≥ |X|, we have that |Y | ≥ |X| implying that such a local
improvement is not possible. J

As mentioned before, a (4, 3)-local search gives a 5 approximation (proof in the full
version of the paper).

I Theorem 4. Let G = (R,B,E) be a bipartite planar graph on red and blue vertex sets
R and B, such that for every subset B′ ⊆ B of size at most 4, |NG(B′)| ≥ |B′|. Then,
|B| ≤ 5 |R|.
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(a) (b)

Figure 1 Unshaded vertices correspond to red and shaded to blue vertices. The dotted lines
show a triangulation. The edges of L are drawn in bold, while the dotted edges and the edges of
the lattice L are not part of the graph. We tile the triangles in (a) as shown in (b). The ratio of
shaded to unshaded vertices goes to 8 as size of the tiling is increased. Connecting the vertices at
the boundary of the tiling to a new vertex gives a 4-connected graph.

3 An Algorithm for (3, 2) Local Search

Our algorithm is based on local search. It starts with a hitting set and repeatedly tries to
make local improvements. Let S be a hitting set for H(P,D). Let X ⊆ S and Y ⊆ P . We
say that (X,Y ) is a local improvement pair with respect to S and H(P,D) if |Y | < |X| and
(S \X) ∪ Y is a hitting set for H(P,D). Such a local improvement reduces the size of the
hitting set by |X| − |Y |. We will refer to this quantity as the profit of the local improvement
and the local improvement pair. We say that X ⊆ S is locally improvable with respect to S
and H(P,D) if there exists a Y ⊆ P such that (X,Y ) is a local improvement pair. If (X,Y )
is a local improvement pair, we say that Y can locally replace X.

Let S be a hitting set for H(P,D). For any s ∈ S, we denote by D(s) the set of disks
in D that are hit by s but not by any other point in S. We will call the disks in D(s) the
personal disks of s. We will denote the region

⋂
D∈D(s) D by R(s) and call it the personal

region of s. The notations D(s) and R(s) are always with respect to a set system H(P,D)
and a hitting set S. These things that are not explicit in the notation will be clear from the
context. We also extend the same definitions for sets of points: for a set X ⊆ S, let D(X)
be the set of disks in D which contain only points of X. We call these the personal disks of
X. The personal region of X is R(X) =

⋂
D∈D(X) D. A set of regions R are pseudodisks if

they are simply connected and the boundaries of every pair of regions in R intersect at most
twice.

Preparing for the algorithm. We prove a few results useful for describing the algorithm.

I Lemma 5. Let S be a hitting set for H(P,D). If |S| > 8 ·Opt(P,D) + 3t, for some integer
t ≥ 0, then there exist t+ 1 disjoint subsets X0, . . . , Xt of S, each of which is of size 3 and
is locally improvable with respect to S in H(P,D).

Proof. The proof is by induction. The statement is true for t = 0: if there is no locally
improvable set X of size 3, then taking B = S and R = O, where O is the optimal hitting
set for H(P,D) and applying Theorem 2, we get that |S| ≤ 8Opt(P,D). Assume inductively
that the lemma is true for t− 1, and let the t disjoint sets of S be X0, · · · , Xt−1. It remains
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to construct the set Xt. Let Z =
⋃t−1
i=0 Xi. Let P ′ = P \ Z, D′ = {D ∈ D : D ∩ Z = ∅} and

S′ = S \ Z. Clearly S′ is a hitting set for H(P ′,D′). Moreover,
I Claim 1. Opt(P ′,D′) ≤ Opt(P,D).

Proof. Take any hitting set A for H(P,D). Then any point a ∈ A that hits a disk in D′
must belong to P ′: otherwise a ∈ P \ P ′ = Z, and we had constructed D′ by removing all
the disks hit by Z from D. Therefore all the points in A hitting D′ belong to P ′, and form a
hitting set in P ′ for H(P ′,D′) of size at most |A|. J

Therefore, |S′| = |S| − 3t > 8 ·Opt(P,D) ≥ 8 ·Opt(P ′,D′), and any hitting set for H(P,D)
contains a hitting set for H(P ′,D′). Now, using the Theorem 2 for t = 0 on S′ and (P ′,D′),
the fact that |S′| > 8 · Opt(P ′,D′) implies that there is set Xt ⊆ S′ of size 3 and a set
Y ⊆ P ′ of size 2 such that (S′ \ Xt) ∪ Y is a hitting set for H(P ′,D′). This means that
(S′ \Xt) ∪ Y ∪ Z is a hitting set for H(P,D) since all disks in D \ D′ intersect Z. In other
words, (S \Xt) ∪ Y is a hitting set for H(P,D) since S′ ∪ Z = S and Xt ∩ Z = ∅. That is,
Xt is locally improvable with respect to S in H(P,D). Since Xt ⊆ S′ and S′ ∩ Z = ∅, Xt is
disjoint from the other Xi’s. J

The following key structural property is crucial (due to shortage of space, proof omitted):

I Lemma 6. Let S be a hitting set for H(P,D). Then the personal regions of the points in
S form a collection of pseudodisks.

I Lemma 7. Let S be a hitting set for H(P,D). Suppose that we are given two sets X ⊆ S
and Y ⊆ P such that |Y | = O(1), |X| > 4|Y | and for each x ∈ X, Y hits D(x), the personal
disks of x. Then there exists a set X ′ ⊆ X of size Ω(|X|) such that (X ′, Y ) is a local
improvement pair with respect to S and H(P,D). Furthermore, given X and Y , X ′ can be
computed in time O(|X| log |X|).

Proof. Consider the Delaunay triangulation of the points in X, and let X ′ be an independent-
set in this Delaunay graph. First we show that (S \X ′) ∪ Y is a hitting set for H(P,D).
Consider a disk D that is not hit by S \ X ′. Since D is hit by S (S being a hitting set
for H(P,D)), D contains at least one point of X ′. If D contains exactly one point x′ ∈ X ′
then D is hit by Y since D ∈ D(x′) and Y hits D(x′). Otherwise, D contains at least two
points of X ′, in which case it must contain some point of x ∈ X \X ′ ⊆ S \X ′ since X ′ is an
independent set in the Delaunay triangulation of X (and by the fact that subgraph of the
Delaunay graph induced by the set of points of X inside any disk is connected).

The Delaunay triangulation can be constructed in O(|X| log |X|) time. If |X| ≤ 5|Y |, i.e.
|X| = O(1), we find an independent set of size at least d|X|/4e > |Y | in the Delaunay graph
in O(1) time by brute force; the existence of such an independent set follows from the 4-color
theorem on planar graphs. If |X| > 5|Y |, we compute a 5-coloring of the Delaunay graph in
O(|X|) time and take the largest color class as X ′. Thus |X ′| ≥ d|X|/5e > |Y |.

Therefore |X ′| > |Y |, and so (X ′, Y ) is a local improvement pair. J

The next two lemmas show that one can efficiently preprocess disks to answer containment
queries in logarithmic time. Due to the shortage of space, the proofs are omitted.

I Lemma 8. Let D be a set of m disks in the plane having a common intersection region,
say R. Then the boundary of R is composed of O(m) circular arcs, and can be computed
in O(m logm) expected time. We can also construct, in O(m logm) time, a data structure
which, for any given query point q, answers whether q ∈ R in O(logm) time.
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I Lemma 9. Let P be a set of n points in the plane and let D be a set of pseudodisks, the
boundary of each being composed of circular arcs. For any constant C, we can compute,
for each p ∈ P that lies in at most C pseudodisks, the exact set of pseudodisks it hits in
O(n log m) time, where m is the total number of arcs in all the pseudodisks.

The Algorithm. We now describe our algorithm for computing a small hitting set for
H(P,D). We first compute a hitting set S of size O(Opt) [5]. We also assume that we know
the value of Opt = Opt(P,D) although it suffices to guess the value of Opt within a (1 + ε)
factor which can be done in O(1/ log (1 + ε)) guesses since we know Opt within a constant
factor. Throughout this section, we will use n as the total input size. We therefore upper
bound |P | and |D| by n.

Next, for a given ε > 0, we prune the input so that no point is contained in more than
∆ = n/(ε ·Opt) disks. This can be done by iterating over each point p ∈ P and computing
the number of disks D′ ⊆ D that contain p. If |D′| ≥ ∆, remove the disks in D′ from D and
add the point p to the set Q (which is initially empty). Note that as we go over the points
the set D changes but we do not change the value of ∆. Since each time we add a point to
Q, we remove at least ∆ disks from D, |Q| ≤ n/∆ = ε ·Opt. We can thus add the set Q to
our hitting set at the cost of an added ε in our approximation factor. This preprocessing
procedure takes O(n2) time (this will not be the bottleneck of our algorithm).

After preprocessing, we pass P and D to Algorithm 1 which we describe now. It requires
an initial hitting set S of size O(Opt) which we obtain from [5]. The goal of Algorithm 1 is to
compute a hitting set whose size is at most (8+ε) ·Opt. We compute a value t = |S|−8 ·Opt
which indicates how far we are from the solution we seek. As we will see, when t is large,
progress can be made quickly. However as we approach the quantity 8 · Opt, progress
becomes slower and slower. The algorithm uses only local improvements of the type (X,Y )
where |Y | ≤ 2. Throughout the algorithm we maintain for each D ∈ D, the number of points,
ND, it contains from S. Initially computing ND for each disk takes O(n2) time. After that
we need to update these quantities only when a local improvement (X,Y ) happens. We
update ND as follows: ND = ND − |D ∩X|+ |D ∩ Y |. Since |Y | is always at most 2 in our
algorithm, naively this takes time O(n|X|) for updating all disks in D. Since such a local
improvement decreases the size of the hitting set S by |X| − 2 = Ω(|X|), the overhead for
maintaining ND is O(n) per improvement. Let LocallyImprove(X,Y ) be the procedure
that updates S to (S \X) ∪ Y and updates ND for each disk as mentioned above.

In each iteration of the while loop in Algorithm 1, we first construct a range reporting
data structure [2] for the points in S so that given any disk D, we can find the set of points
in D∩S in time O(logn+ |D∩S|). We then use this data structure to compute the personal
disks of each s ∈ S as follows. Iterate over each disk D ∈ D and if ND = 1, use the reporting
data structure to find the single point s ∈ S that is contained by D. We then add D to
the (initially empty) list of personal disks of s. Since each query takes O(logn) time, the
total time taken to compute the personal disks is O(n logn). If we find some point s ∈ S for
which D(s) = ∅, we can just remove s from the current hitting set. In other words we do a
local improvement ({s}, ∅).

The algorithm iterates over the points of P in random order, considering the possibility
of replacing each point in a local-improvement step. Say the current point being considered
is p1; the goal is to find a point p2 so that {p1, p2} can replace a large set X ⊆ S, i.e., a
local improvement pair (X, {p1, p2}) of large profit. If we can find such a profitable local
improvement, we make the improvement, exit from the for loop, and continue with the
next iteration of the while loop. Otherwise, we continue with the next point in the random
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Algorithm 1: Algorithm for (8 + ε)-approximation.
Data: A point set P , a set of disks D, a hitting set S of H(P,D) with

|S| = O(Opt(H(P,D))), the size of the optimal hitting set
Opt = Opt(H(P,D)), and a parameter ε > 0.

1 For each disk D ∈ D compute ND = |D ∩ S| // takes O(n2) time
2 while t = |S| − 8 ·Opt > ε ·Opt do
3 Construct a range reporting data structure for S for disk ranges
4 For each s ∈ S compute D(s) = {D ∈ S : D ∩ s = {s}}// use range reporting
5 if D(s) = ∅ for some s ∈ S then
6 LocallyImprove({s}, ∅) // s is dropped from the hitting set
7 continue // with the next iteration of the while loop on line 2.

8 π = A random permutation of the points in P
9 for i = 1 to |P | do

10 p1 = πi
11 for each s ∈ S do
12 Compute: D′(s) = {D ∈ D(s) : p1 /∈ D}, R′(s) =

⋂
D∈D′(s) D

// The above loop takes O(n logn) time
13 Let R′ = {R′(s) : s ∈ S} // R′ is a set of pseudodisks
14 M = {s ∈ S : R′(s) = ∅}
15 for each p ∈ P do
16 Compute α(p) s.t. 0.9 · depth(p,R′) ≤ α(p) ≤ depth(p,R′)

// depth(p,R’) denotes the number of regions in R′ containing
p

17 Let q = argmaxp∈P α(p)
18 Set β = max{

√
t, εt ·Opt/n}

19 if |M |/5 + α(q) ≥ iβ
Cn logn then

20 Compute S′(q) = {s ∈ S : q ∈ R′(s)} // Note that |S′(q)| = depth(q,R′)
21 if |S′(q) ∪M | ≥ 9 then
22 Compute an independent set X ⊆ S′(q) ∪M in the Delaunay

triangulation of S′(q) of size at least 3 and Ω(|S′(q) ∪M |)
// O(n logn) time

23 LocallyImprove(X, {p1, p2 = q})
24 break // exit for loop

25 else
26 For each p2 ∈ P , set S′(p2) = {s ∈ S : p2 ∈ R′(s)} // O(n logn) time

// Since |S′(q) ∪M | ≤ 8, |S′(p2) ∪M | ≤ b8/0.9c = 8 for all
p2 ∈ P

27 Enumerate all pairs (X, p2) where p2 ∈ P , X ⊆ S′(p2) ∪M and |X| ≤ 3
28 if for any (X, p2) enumerated, (X, {p1, p2}) is a local improvement pair

then
29 LocallyImprove(X, {p1, p2}))
30 break // exit for loop
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ordering. For any pair of points Y = {p, q} ⊆ P , denote by ρ(Y ) the number of points
in S all of whose personal disks are hit by Y . For a point p ∈ P , we use ρ(p) to denote
maxq∈P\S ρ({p, q}). Call a point p ∈ P useful if there exists some q ∈ P so that for some
X ⊆ S, (X, {p, q}) is a local improvement pair.

Analysis of the Algorithm.

I Lemma 10. If p1 is useful, we can compute in O(n log2 n) time a local improvement of
profit Ω(ρ(p1)).

Proof. Let us start by considering how we could compute ρ(p1). In order to compute ρ(p1),
we need to find a point q so that the number of points s ∈ S whose personal disks are hit by
{p1, q} is maximized. To do this, we first compute for each s ∈ S, the set D′(s) of disks in
D(s) that are not hit by p1. For each s ∈ S, we then construct the region R′(s) by taking the
intersection of the disks in D′(s). Let R′ = {R′(s) : s ∈ S}. For some s ∈ S, D′(s) may be
empty and consequently some of the regions in R′ are empty. Let M = {s ∈ S : D′(s) = ∅}.
The personal disks of the points in M are hit by p1 alone. The regions in R′ define an
arrangement of pseudodisks (Lemma 6). In this arrangement we seek to find a point q ∈ P
of maximum depth. However, instead of finding a point with maximum depth, we find a
point whose depth is within a constant factor of the maximum. We construct, in O(n logn)
time, an approximate depth query data structure for the pseudodisks in R′ using Corollary
5.9 in [7] with a constant ε′ ≤ 0.1. Then for each point p ∈ P , compute a value α(p) s.t.
0.9 depth(p,R′) ≤ α(p) ≤ depth(p,R′) where depth(p,R′) denotes the depth of p in the
arrangement of regions in R′. This takes O(log2 n) time per point and so the overall time
taken is O(n log2 n). We then take the point p with the maximum α(p) as q. Observe that
|M | + α(q) = Θ(ρ(p1)). We first compute the set S′(q) = {s ∈ S : q ∈ R′(s)}. Note that
|S′(q)| = depth(q,R′) ≥ α(q). There are two cases to consider:

Case 1: |S′(q) ∪M | > 8. In this case, we set p2 = q and let Y = {p1, p2}. Using
Lemma 7 (note here that |S′(q) ∪M | > |Y |), we can find a subset X ⊆ S′(q) ∪M so that
X = Ω(|S′(q) ∪M |) so that (X, {p1, p2}) is a local improvement pair. Note that |X| is
Ω(ρ(p1)). Thus in this case, we conclude that p1 is useful and indeed we have found a local
improvement that decreases the size of the current hitting set by Ω(ρ(p1)).

Case 2: |S′(q) ∪M | ≤ 8. In this case S′(p) ≤ b8/0.9c = 8 for all p ∈ P . This means that
ρ(p1) = O(1) and we just need to find one set X of size 3 and a point p2 so that (X, {p1, p2})
is a local improvement pair. Using Lemma 9, we compute the set S′(p) for all p ∈ P in
O(n logn) expected time. For each p2 ∈ P , we need to check if there is any subset X in
S′(p2)∪M of size 3 so that (X, {p1, p2}), is a local improvement pair. Since |S′(p2)∪M | ≤ 8,
there are at most

(8
3
)
subsets X ⊆ S′(p2)∪M for which we need to check if (X, {p1, p2}) is a

local improvement pair. Thus there are O(n) pairs of the form (X, {p1, p2}), where |X| = 3,
that we need to check. For a particular pair of this form, we basically need to verify that
all the disks in D whose intersection with S is a subset of X are hit by either p1 or p2. To
make things simpler, we first remove from D all the disks that are hit by p1 and obtain a set
D′ ⊆ D. Now, we need to verify for all disks in D whose intersection with X is a subset of
X that they are hit by p2. All the O(n) pairs can be checked in O(n logn) time as follows.

We construct a data structure that will help us do the checking for all the O(n) pairs
of the form (X, {p1, p2}). We have already constructed a range reporting data structure on
S for disk ranges. Additionally, use a dictionary data structure (based on balanced binary
trees) in which the keys are subsets of S of size at most 3 and the value corresponding to
a key U is a list of disks D ∈ D′ s.t. D ∩ S = U . We start with an empty dictionary. We
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then go over each disk D ∈ D′ one by one and if ND ≤ 3, we use the range reporting data
structure to get U = D ∩ S in O(logn) time. We search the dictionary for U and if it is
found, we add D to its list. If no entry is found, we create an entry for U with a single
element d in its list. Note that since the number of (≤ 3)-sets that can be obtained from set
of n points by intersecting it with a set of disks is linear in the number of points [21], the
number of distinct keys in the dictionary is O(n). We go over each key U and construct the
region R′(U) by taking the intersection of all the disks in the list associated with U . Note
that R′(U) can be constructed in O(m logm) time where m is the size of the list associated
with U using Lemma 8. Since each disk is in the list of at most one U , the overall time is
O(n logn). In the same amount of time, for each key U , we set up a data structure that
allows us to check if a query point q is in R′(U) using Lemma 8. Now, to check if a pair
(X, {p1, p2}) is an improvement pair, we go over all subsets U ⊆ X and check if p2 ∈ R′(U).
The time spent for any pair is now O(logn). Therefore checking all the O(n) pairs takes
O(n logn) time.

If none of the checked pairs give local improvement, we conclude that p1 is not useful. J

Next we show how to find a profitable improvement. Let β = max{
√
t, εt ·Opt/n}.

I Lemma 11. There exists a k > 0 such that there are at least Ω(β/k) useful points p ∈ P
with ρ(p) ≥ k.

Proof. By Lemma 5, there exists Ω(t) local improvement pairs (X0, Y0), . . . where the Xi’s
are disjoint subsets of S but the Yi’s need not be disjoint. Each Xi is of size 3 and each Yi is
of size 2. For any pair of points Y = {p1, p2} ⊆ P , if (Xi, Y ) is a local improvement pair
among the Ω(t) pairs, then we say that Xi is a triple assigned to the pair Y . Define the
weight of Y as the number of triples assigned to it and denote it by W (Y ). The total weight
of all pairs is then Ω(t).

Call a pair Y to be of type i if 2i−1 ≤W (Y ) < 2i, for i = 1, . . . , O(log t). IfW (Y ) = 0 then
we say that Y is of type 0. Since the total weight of all pairs is Ω(t), there must be some j > 0
so that the total weight of the pairs of type j is Ω(t/2j). Let Q =

⋃
Y {Y | Y is of type j}.

There are two lower bounds on the size of Q. First, since the total weight of the pairs
of type j is Ω(t/2j), and each pair has weight less than 2j , the number of pairs is Ω(t/22j),
and hence |Q| = Ω(

√
t/2j). On the other hand, for any local improvement pair (Xi, Y )

where Y is of type j, take any point x ∈ Xi. Since D(x) is non-empty, any disk D ∈ D(x)
contains at least one point in Y . Therefore any such local improvement pair leads to an
incidence between a point in Q and a disk in D. Note that since the Xi’s are disjoint these
are distinct incidences. Thus there are Ω(t/2j) incidences. Since by assumption no point
in P , and therefore no point in Q, is in more than n/(ε · Opt) disks in D, we have that
|Q| = Ω(εt ·Opt/2jn).

Therefore, |Q| = Ω
(
max{εt ·Opt/2jn,

√
t/2j}

)
= Ω(β/2j). Observe that each p ∈ Q is

useful and ρ(p) ≥ 3 · 2j . The lemma is therefore true for k = 2j . J

Running time. Preprocessing takes O(n2) time but this is dominated by the running time
of Algorithm 1. Consider a single iteration of the while loop in Algorithm 1. If we find some
point s ∈ S for which D(s) = ∅, we drop s from the current hitting set. This way we have
improved the size of the hitting set at the cost of O(n logn) time. The total time spent on
such improvements is at most O(Opt n logn) = O(n2 logn).

Otherwise, call a single iteration of the while loop lucky if the following is true:

∃i such that the point πi is useful and
i

ρ(πi)
≤ Cn

β
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for some constant C.

I Claim 2. Probability that any iteration of the while loop is lucky is at least 1/2.

Proof. By Lemma 11, there exists a k such that there are Ω(β/k) useful points, say the
set U , with ρ(p) ≥ k. Consider the smallest index i s.t. πi ∈ U . The expected value of i is
O(nk/β). Therefore, with probability at least 1

2 , i ≤ Cnk/β for some large enough C. Then,

i

ρ(πi)
≤ Ckn/β

k
= Cn

β

J

I Claim 3. For a lucky iteration of the while loop, let λ be the reduction in size of the
current hitting set, and σ the time spent in this iteration. Then σ/λ ≤ Cn2 log2 n/β.

Proof. As we go over the points in random over, for the current point ν = πi, we estimate
ρ(ν) which allows us to check if i/ρ(ν) ≤ Cn/β. If so, assuming that the point ν is useful,
we decrease the size of the current hitting set by Ω(ρ(ν)). If i/ρ(ν) > Cn/β or we discover
that ν is not useful we move to the next point in the random order. However, since the
iteration of the while loop is lucky, we will find some point ν = πi which is useful and
for which i/ρ(ν) ≤ Cn/β. For this point ν, we find a local improvement involving ν of
value Ω(ρ(ν)) and the current iteration of the while loop ends. The total time spent in this
iteration is σ = O(i · n log2 n) since we have seen i points so far and for each point we spend
O(n log2 n) time. The reduction in the size of the current hitting set is λ = Ω(ρ(ν)). Thus
σ/λ ≤ i

ρ(ν) · n log2 n ≤ Cn2 log2 n/β. J

Since any iteration of the while loop is lucky with probability at least 0.5, we can assume
that all the iterations are lucky (running time affected by a factor of 2).

I Claim 4. The expected time taken to halve t is O(n7/3 log2 nε−1/3).

Proof. Claim 3 tells us that the amortized amount of time spent for the reducing the size
of the current hitting set by 1 is O(n2 log2 n/β). Since β is an increasing function of t, this
decreases with t. However, t does not change by more than a factor of 2 until it is halved. So,
the expected time for t to be halved is O(t/2 ·n2 log2 n/β). Now, t/β = min{

√
t, n/(ε ·Opt)}.

Since t = O(Opt), t/β = O(min{
√

Opt, n/(ε ·Opt)} = O((n/ε)1/3). Thus the expected
time to halve t is O(n7/3 log2 nε−1/3). J

Since the initial value of t is O(Opt), there are O(log 1/ε) halving rounds until t ≤
ε ·Opt. Thus, the expected running time of the Algorithm 1 is O(n7/3 log2 n ε−1/3 log (1/ε)).
Finally, since we need to run Algorithm 1 for O(1/ log (1 + ε)) guesses for Opt, the overall
running time is O(n7/3 log2 n ε−1/3 log (1/ε)/ log (1 + ε)). For a fixed small value of ε, this is
O(n7/3 log2 n).
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