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Abstract

We describe a novel representation of the light field tailored to improve importance sampling
for Monte Carlo rendering. The domain of the light field i.e., the product space of spatial
positions and directions is hierarchically subdivided into subsets on which local models char-
acterize the light transport. The data structure, that is based on double trees, approximates the
exact light field and enables very efficient queries for importance sampling and easy tracing of
photons in the scene. The framework is simple yet flexible, enabling the usage of any type of
local model for representing the light field, provided it can be efficiently importance sampled.
The method also supports progressive refinement with an arbitrary number of photons. We
provide a reference open source implementation.

1. Introduction

The efficient solution of the rendering equation for photo-realistic image generation
from a 3D scene model is a long-standing problem in computer graphics, requiring ef-
ficient algorithms that are able to produce good approximation in the limited amount
of time dictated by the application scenario. Some of the most successful methods for
rendering photo-realistic images are based on Monte Carlo integration e.g., bidirec-
tional path tracing [Veach and Guibas 1995a]. In order to improve the efficiency of
these methods, it is necessary to sample the function that is integrated according to a
distribution that is as similar as possible to the function itself.

An ideal distribution would be proportional to the integrand. Several methods
have been proposed, all of which construct different distributions that attempt to ap-
proximate the integrand with efficient estimators. The simplest strategy samples the
BRDF or direct light sources, using multiple importance sampling [Veach and Guibas
1995b], providing an optimal mechanism to combine these estimators. Jensen [1995]
and recently Vorba et al. [2014] proposed importance sampling distribution models
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based on the incoming light, while accounting for the indirect illumination. The lat-
ter is considered the current state-of-the-art method, but it models distributions using
Gaussian mixture models (or GMM) that require lengthy preprocessing.

Based on the same framework, we propose a novel representation of the light field
with the key property that it enables efficient importance sampling for Monte Carlo
methods without lengthy preprocessing. Moreover, our approach is very simple to
implement and enables progressive refinement, i.e., training with an arbitrary number
of photons. At a high level, we model the light field—the function mapping radi-
ance values to points in the product space of spatial positions and directions—as a
collection of simple functions (or local models). More precisely, we cluster the prod-
uct space and, for each cluster, create a local model that approximates the light field
locally, generating them by tracing photons in a preprocessing phase prior to render-
ing. This representation removes redundant information by assigning distributions to
larger areas and improves the approximation by subdividing the space into smaller
subspaces, therefore enabling models to capture local phenomena more precisely.

2. Previous Work

Importance Sampling for Incoming Light

A recent approach for representing incoming light in the importance distribution was
proposed by Vorba et al. [2014]. This method starts by creating a dense sampling
of local distributions by associating a hemispherical distribution with points in the
scene. Then, during sampling, the closest associated distribution is queried with re-
spect to the rendered point and used to sample the incoming light. The underlying
distribution model uses GMMs, but this representation can be replaced by any other
model that can be efficiently sampled, such as histograms [Jensen 1995] or sets of
cones [Hey and Purgathofer 2002], for instance. As this method only models the in-
coming light, it must eventually be combined with BRDF sampling techniques using
multiple importance sampling. Alternatively, Hua and Lowe [2015] aim at importance
sampling of incoming light using Metropolis sampling on a dense set of virtual point
lights [Keller 1997] (or VPLs) in the scene. Although numerous methods have been
proposed to represent the incoming light from environment maps and BRDFs [Clar-
berg et al. 2005; Jarosz et al. 2009], such strategies have limited applicability in our
case as they cannot capture indirect lighting.

Representing the Light Field

Ren et al. [2013] achieve real-time global illumination using a similar light-field do-
main subdivision strategy and training neural-network models that approximate the
light field in each subspace. Our method shares this idea of training local models, but
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it additionally enables efficient sample generation by exploiting double tree hierar-
chies [Bus et al. 2015] to compute illumination with VPLs. Our proposed technique
develops this data structure further to enable efficient sampling and training with pho-
tons.

3. Method

Let us first define the notation used in this paper. We seek to solve the rendering
equation [Kajiya 1986] (Equation (1)) for a point x ∈ R3 and direction ω ∈ Ωx

where nx is the surface normal and Ωx is the hemisphere of directions at x, f is the
BRDF function, and L is the luminance (with Le being the emitted radiance at x):

L(x, ω) = Le(x, ω) +

∫
Ωx

f(x, ωi, ω)L(x, ωi) cos(nx · ωi)dωi. (1)

Let C ⊂ R3 be a dense subset of points on the surfaces of a scene. The method
of [Vorba et al. 2014] creates a local representation of the incoming light at each of
the points in C. Assuming that D is the space of the hemispherical distributions, this
can be written as a mapping m : C → D. Typically, D is restricted to a special
family of distributions, e.g., histograms (piece-wise constant) or Gaussian mixture
models (GMM). In the latter case, m(p) = GMM(λ(p)) where p ∈ C and λ denotes
the parameters of the Gaussian mixture model. At rendering time, for an arbitrary
point x ∈ R3, the algorithm finds the point p ∈ C closest to x and takes its distri-
bution m(p) to be used for importance sampling, resulting in a piecewise constant
reconstruction of m(·) over R3.

Intuition

In the Monte Carlo setting, m(·) is used as an estimator of the integral: L(x, ω) =
1
n

∑n
i=1 f(x, ωi, ω)L(x, ωi) cos(nx · ωi)/m(x, ωi), where m(x, ωi) = m(x)(ωi) for

simplicity. This simple notation reveals that what we truly seek is a function g :

R3 × S2 → R, such that given any x ∈ R3, g(x, ·) can be easily sampled and the
marginal integral,G(x) =

∫
Ωx
g(x, ω)dω, is known, so that g(x, ·) can be normalized

to obtain a distribution. This means that m(x)(ω) = g(x, ω)/G(x) and, therefore, g
can be used as an estimator. Note that g(·, ·) is ideally the representation of the light
field in such a way that, for a given x, we can easily obtain a distribution that can be
sampled.

Overview

In this paper, we propose a construction that approximates the light field and pos-
sesses this desired property. The high-level idea is very simple: we subdivide the
space into subspaces and, for each of the subspaces, we create a local model that ap-
proximates the light field on this restricted domain. The underlying model is arbitrary,
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e.g., a simple constant function or a Gaussian mixture model. The only restriction on
it is that it enables efficient sampling and marginal integral calculation. This con-
dition prohibits, for example, the usage of neural networks, as we are not aware of
efficient sampling methods for neural networks. The only difficulty is how to actually
obtain a hemispherical distribution—or more precisely sample it—for any point in
the scene as one would have to assemble several local models for each point to have
one proper distribution for the hemisphere. Our key idea is to address this issue by
structuring these local models over a double hierarchy of the position-normal product
space in a way that sampling hemispherical distributions becomes efficient. Similarly
to Vorba et al. [2014], each of these local models are created from multiple batches
of photons in a preprocessing phase. Additionally, our method enables training with
a theoretically infinite number of photons.

In the remainder of this paper, we describe the details of the data structure and the
algorithms for sampling and creating/training the local models.

3.1. Data Structure

We first introduce the data structures that support our algorithm. Consider a hi-
erarchical subdivision of both R3 and S2 to a given depth, where each subspace
is divided into c smaller subspaces. Let us denote these hierarchical structures by
R = {Rj

i ⊆ R3} and Q = {Qj
i ⊆ S2}, where the indices are as follows: Rj

i is
the jth subspace on the ith level (0 ≤ j < ci). In practice, these structures might
be any hierarchical clustering data structures, e.g., kd-trees or octrees. Each subspace
(hereafter called node) stores references to the parent and children nodes. For our
implementation, we have opted for simplicity; therefore, we used simple octrees that
are built using the Cartesian coordinates for R and the polar coordinates for Q. In
the case of the latter, we have a degenerate octree, i.e., a quadtree, but for the sake
of simplicity, we will not distinguish between them. Furthermore, each node in R
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Figure 1. Double hierarchy for the product space (left). The dotted gray lines constitute nodes
of the product graph P , and the solid red links constitute its leaf nodes.
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stores an initially empty list of product-space nodes, pnodeList (see below for
their definition) and a simple number, val (see Section 3.2 for its utility).

Let us denote a hierarchical subdivision of the product space R3 × S2 as P and
restrict the subspaces to have the form Rj

i ×Ql
k with their children being formed by

either subdividing Rj
i or Ql

k into its c children. Hence, each product-space subspace
can be represented by a link between two nodes in R and Q. Together with the
children/parent relationships, P is stored as a tree structure with the same arity as R
and Q. (See Figure 1.) In addition to this information, each node will also have two
pointers, rnode and qnode, to the associated tree nodes, Rj

i and Ql
k. Moreover the

leaf nodes, i.e., the finest subspaces of the hierarchical subdivision are contained in
the pnodeList field of Rj

i . Note that these leaves are disjoint, and that their union
covers the whole product space.

A node in P represents a spatial subspace coupled with a subset of directions. We
associate each of the leaf nodes with a local model, g

Rj
i×Ql

k
, representing the sought

function, g(·, ·), a function on this subspace, i.e., g
Rj

i×Ql
k
(x, ωi) = g(x, ωi)|Rj

i×Ql
k
.

For simplicity, we will refer to this model as the node.model. Since our local
models need to provide quick access to their marginal integral, we restrict these local
models to be constant along the spatial dimension (this is needed for instantly access-
ing the marginal integrals; see Section 3.2). One could relax this condition, provided
that one has constant time access to the marginal integrals of the local model, but we
have not investigated if this is feasible.

3.2. Primitives

In this section we describe the primitives associated to our data structure.

Construction. Depending on the exact realization, it is straightforward to build R
and Q. To build P , one simply recursively subdivides product-space clusters starting
with P 0

0 = R0
0 × Q0

0. To decide whether the spatial or directional node is to be
subdivided at a given step, we simply take the one with smaller depth in its tree.
The stopping criterion is discussed in the next paragraph. See Algorithm 1 for the
pseudocode.

Refinement. It is clear that each of these structures can be adaptively refined by sim-
ply adding new leaf nodes. After each batch of photons, we refine the trees according
to the following rule: Each leaf node in P is subdivided as long as its local model’s
marginal integral is not smaller than ε times the average of the sum of all marginal
integrals along the path between R0

0 and its spatial node’s leafs. We set ε to 0.1 in our
implementation. Local models are simply moved to the new leaves, and if the node
in Q is subdivided, we also divide the models with the arity of Q. This ensures that
none of the local models represent a significant portion of

∫
g(x, ω)dω with respect
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Algorithm 1 Construction of P .

Require: R a hierarchical space subdivision structure of R3

Require: Q a hierarchical space subdivision structure of S2

Require: S a stack of pairs
1: function BUILDP
2: proot← (R.root, Q.root)
3: S← ∅
4: S.push(proot)
5: while S 6= ∅ do
6: p← S.top()
7: S.pop ()
8: p.rnode.pnodeList.remove(p)
9: m← µ / 2

10: if depth(p.rnode) > m and depth(p.qnode) > m then
11: p.rnode.pnodeList.append(p)
12: else
13: if depth(p.rnode) < depth(p.qnode) then
14: for all i ∈ children(p.rnode) do
15: u← (i, p.qnode)
16: i.pnodeList.append(u)
17: S.push(u)
18: p.children.append(u)

19: else
20: for all i ∈ children(p.qnode) do
21: v← (p.rnode, i)
22: p.rnode.pnodeList.append(v)
23: S.push(v)
24: p.children.append(v)

25: return proot

to any point in R3. This follows from the fact that, for any spatial leaf node, the links
along the path to the root disjointly cover S2—a direct consequence of the recursive
construction algorithm. Moreover, we limit the maximum depth of R and Q to µ
which is set to 9 in our implementation. See Algorithm 2 for the pseudocode.

Training. Since P has a tree structure, we can easily descend to a leaf node and
update the local model using the photons generated by the system for training. When
all photons are processed, we calculate the marginal integral of g

Rj
i×Ql

k
(·, ·) for each

leaf node Rj
i × Ql

k in P and accumulate it in the val field of Rj
i . We omit the

pseudocode for this step for brevity and refer the reader to the accompanying source
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Algorithm 2 Refinement of P .
Require: R with each node’s val set to the average sum of marginal integrals
Require: S a stack of pairs

1: function REFINE

2: S← ∅
3: S.push(P .root)
4: while S 6= ∅ do
5: p← S.top()
6: S.pop ()
7: if children (p) 6= ∅ then
8: for all i ∈ children(p) do
9: S.push(i)

10: else
11: if p.model.marginal > ε · p.rnode.val then
12: if depth(p.rnode) < depth(p.qnode) then
13: if depth(p.rnode) < µ then
14: for all i∈ children(p.rnode) do
15: u← (i, p.qnode)
16: u.model← p.model
17: i.pnodeList.append(u)
18: S.push(u)
19: p.children.append(u)

20: else
21: if depth(p.qnode) < µ then
22: for all i ∈ children(p.qnode) do
23: v← (p.rnode, i)
24: v.model← p.model / c
25: p.rnode.pnodelist.append(v)
26: S.push(v)
27: p.children.append(v)

code which can be found at http://www.jcgt.org/published/0006/03/02/
doublehierarchies_source.zip.

Sample generation. For a given position x, we descend to the leaf of R containing
x and sum up the marginal integrals of the product-space nodes stored along the path
during this process. Clearly, this sum is the marginal integral on the whole S2 for x.
Using this value as the normalization constant, we can simply pick one product-space
cluster (from the links along the path of the descent) and sample its local model.
Note that this gives a sample on S2 instead of the hemisphere Ωx defined by the
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surface normal at x. To solve this problem, one could use rejection sampling. In
practice, however, we symmetrized the distribution, i.e., given a sampled direction,
ω, we also evaluate g(x,−ω)/G(x) and return the average of the two probabilities
and the direction on the proper side of the surface. This preserves the constant time
sampling at the cost of losing precision (see Algorithm 3).

Algorithm 3 Sample generation.

1: function SAMPLE(x)
2: sum marginals←0
3: p←R.root
4: while children(p) 6= ∅ do
5: p← child of p containing x
6: sum marginals += i.marginal

7: (ω, probω)← pick a random product node proportionally to sum marginals
along the path to x and sample the local model

8: prob−ω ← find the leaf in P containing (x, -ω) and calculate its probability
9: return the direction pointing away from the surface and the

probability 1
sum marginals · (probω + prob−ω)

Given these primitives, our method works as follows: (i) prior to rendering, we
build shallow hierarchies and train the local models with the photons in each batch,
while after each batch we refine the structures; (ii) during rendering, we simply sam-
ple the data structure.

4. Experiments

We implemented our algorithm in Mitsuba [Jakob 2010], as an extension of the pub-
licly available source code of Vorba et al. [2014] to enable easy comparison with their
method. As a consequence, our algorithm also uses the same batch-based training
implemented there, i.e., interleaved training with importons and photons and GMM
sampling of the environment map. All of our experiments were carried out on an
Intel Xeon E5-1660 v3 processor (8 cores @ 3 GHz) with 32 GB DDR4 2133 MHz
memory. Our source code is publicly available.

We used several scenes to give examples of difficult scenarios (see Figure 2). In
particular, the POOL scene contains a significant amount of caustics, and it is lit by
an environment map. The DOOR scene contains an area light source which is not
directly visible from the majority of the scene, and it also contains some caustics
from this light source. The SPONZA and DINING scenes are included to compare the
algorithms’ performance in more classical scenarios.

Table 1 gives detailed error, memory, and timing results for the tested scenes and
methods. The reference has been created by the Gaussian distribution-based algo-
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Figure 2. Images rendered with the different algorithms. From left to right: reference, Gaus-
sian, double hierarchy. Top to bottom: DOOR, POOL, SPONZA and DINING scenes.

rithm of Vorba et al. [2014] using 65K samples per pixel, while the test images have
256 samples per pixel. We compare our method denoted as Double with this method,
denoted as Gauss. All images have 1024× 1024 resolution, and the maximum depth
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Scene Method L1 RMSE SSIM Memory Preproc. Render Total(s)

POOL
Gauss 0.213967 1.537650 0.663241 897.57 444.00 354.00 805.00
Double 0.257429 1.132270 0.611492 1456.75 282.00 282.00 570.00

DOOR
Gauss 0.000226 0.002333 0.997712 938.51 816.00 528.00 1341.00
Double 0.000255 0.001881 0.997360 2299.05 336.00 510.00 845.00

SPONZA
Gauss 0.001202 0.002221 0.998713 785.91 600.00 660.00 1263.00
Double 0.000950 0.001855 0.999544 866.84 120.00 582.00 704.00

DINING
Gauss 0.006490 0.060370 0.899290 740.75 468.00 630.00 1096.00
Double 0.005835 0.029639 0.918666 1080.86 210.00 648.00 861.00

Table 1. Numerical results for images with 256 samples per pixel comparing the Gaussian-
mixtures approach by Vorba et al. (Gauss) with our method (Double).

of each light path is 10. The preprocessing includes training the data structures with
30 batches of 300K photons. We observe that, even with the very simple constant
model, our method performs comparably to the Gauss method in terms of quality for
a similar memory usage (except in the DOOR scene). We believe that the high mem-
ory usage and somewhat lower quality in the DOOR and SPONZA scenes is a conse-
quence of our refinement algorithm being suboptimal, as it only takes into account
photons but not importons. One could augment our method similar to the solution
in [Simon et al. 2015]. Moreover, the subdivision criteria and the symmetrization of
distributions we used is not efficient for spatial subspaces where there is a large dif-
ference between actually visible light and the incoming photons (e.g., two sides of the
door being very differently lit in the DOOR scene). This could also explain the high
memory usage as it refines the trees to an unnecessary depth. Most importantly, in
terms of performance, our approach achieves a significant speed-up in pre-processing
time, with an additional speed-up in the rendering time. Additionally, we note that
our approach handles a sparse training set of photons easily even if our final piece-
wise constant distributions (histograms) have hundreds of bins as they are trained on
big areas containing photons. However, high-frequency features might be less pre-
cisely represented due to our coarse-to-fine construction strategy. Finally, we believe
that the simplicity of our method makes it a valuable alternative to methods based on
Gaussian mixtures.

5. Discussion and Future Work

Our method provides a fast, very robust, easy to implement, and flexible framework
for importance sampling in Monte Carlo rendering that could be useful in many other
sampling problems in rendering. In particular, our double-hierarchy structure enables
the usage of arbitrary distribution models and performs well even with the simplest
constant models. As future work, it would be interesting to study how one could
jointly sample this illumination model and the BRDFs, as well as to explore more ex-
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pressive local models and more adaptive refinement strategies that take into account,
for example, surface normals for photons or the difference between the children light
fields of a product node.
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