
Double Hierarchies for Efficient Sampling in Monte Carlo
Rendering

Norbert Bus
Tamy Boubekeur

LTCI, Telecom ParisTech, Paris-Saclay University

Figure 1: Renderings of difficult scenarios. From left to right: reference, GMMs [Vorba et al. 2014] and our method.

ABSTRACT
We propose a novel representation of the light field tailored to im-
prove importance sampling for Monte Carlo rendering. The domain
of the light field i.e., the product space of spatial positions and di-
rections is hierarchically subdivided into subsets on which local
models characterize the light transport. The data structure is based
on double trees, and only approximates the exact light field, but
enables efficient queries for importance sampling and easy setup by
tracing photons in the scene. The framework is simple yet flexible,
supports any type of local model for representing the light field,
provided it can be efficiently importance sampled, and progressive
refinement with an arbitrary number of photons. Last, we provide
a reference open source implementation of our method.

CCS CONCEPTS
• Computing methodologies → Ray tracing; • Mathematics
of computing →Markov-chain Monte Carlo methods;

KEYWORDS
Monte Carlo rendering, importance sampling

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGGRAPH ’17 Talks, July 30 - August 03, 2017, Los Angeles, CA, USA
© 2017 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5008-2/17/07.
https://doi.org/http://dx.doi.org/10.1145/3084363.3085063

ACM Reference format:
Norbert Bus and Tamy Boubekeur. 2017. Double Hierarchies for Efficient
Sampling in Monte Carlo Rendering. In Proceedings of SIGGRAPH ’17 Talks,
Los Angeles, CA, USA, July 30 - August 03, 2017, 2 pages.
https://doi.org/http://dx.doi.org/10.1145/3084363.3085063

1 BACKGROUND
Importance sampling for incoming light. One of the most recent

approaches for representing incoming light is proposed by [Vorba
et al. 2014]. It starts by creating a dense sampling of distributions
by associating a hemispherical distribution with points in the scene.
Then, during sampling, the distribution closest to the rendered
point is queried and used to sample the incoming light. The method
uses GMMs (gaussian mixture models) as distributions, but they can
be replaced by any model. As the method only models the incoming
light, one has to combine it with BRDF sampling using multiple
importance sampling.

Representing the light field. [Ren et al. 2013] achieve real-time
global illumination by utilizing a similar light field domain subdi-
vision strategy, training neural network models that approximate
the light field in each subspace. Our method shares this idea of
training local models but additionally enables efficient sampling by
exploiting double tree hierarchies [Bus et al. 2015]. Our proposed
technique develops further this data structure to enable efficient
sampling and training with photons.

2 METHOD
Let D be the space of hemispherical distributions and let the map-
pingm : R3 → D assign a distribution of incoming light to each
point in a scene. In the Monte-Carlo setting m(·) is used for an

https://doi.org/http://dx.doi.org/10.1145/3084363.3085063
https://doi.org/http://dx.doi.org/10.1145/3084363.3085063


SIGGRAPH ’17 Talks, July 30 - August 03, 2017, Los Angeles, CA, USA N. Bus & T. Boubekeur

estimator of the integral in the rendering equation, i.e., L(x ,ω) =
1
n
∑n
i=1 f (x ,ωi ,ω)L(x ,ωi )/m(x ,ωi )wherem(x ,ωi ) =m(x)(ωi ) for

simplicity, L(x ,ω) is the radiance at x ∈ R3 in direction ω ∈ S2, ωi
is the sampled direction and f (·, ·, ·) is the BRDF including the cos
term. This simple notation reveals that what we seek is a function
m : R3 × S2 → D, such that given any x ,m(x , ·) can be easily sam-
pled and the marginal integral,

∫
Ωx

m(x ,ω)dω, is known, therefore
m(x , ·) can be normalized to obtain a distribution. Note thatm(·, ·)

is practically the representation of the light field in such a way that
for a given x we can easily sample the corresponding distribution.

Overview. In this paper, we propose a construction that approxi-
mates the light field and possesses the previous property. The idea
is very simple: we subdivide the space into subspaces and for each
of the subspaces we create a local model that approximates the light
field on this restricted domain. The underlying model is arbitrary,
e.g., simple constant function or Gaussian mixture model, the only
restriction on it is that it enables efficient sampling and marginal
integral calculation. The only difficulty is how to actually obtain a
hemispherical distribution – or more precisely sample it – for any
point in the scene as one would have to join several local models.
Our key idea is to address this issue by structuring these local dis-
tributions over a double hierarchy of the position-normal product
space, such that sampling proper hemispherical distributions is
efficient. Similarly to [Vorba et al. 2014], these local models are
created from multiple batches of photons in a preprocessing phase.

R3 S2R3 × S2

Figure 2: Double hierarchy for the product space.

2.1 Data structure
Consider a hierarchical subdivision of both R3 and S2 to a sufficient
depth. Let’s denote these structures by R = {R

j
i ⊆ R3} and Q =

{Q
j
i ⊆ S2}where the indices are as follows:R ji is the jth subspace on

the ith level. In practice, these structures might be any hierarchical
clustering data structure, e.g., octrees. Each subspace (hereafter
called node) in R stores an initially empty list of product space
nodes (see below for their definition) and an RGB value.

We denote a hierarchical subdivision of the product spaceR3×S2

as P and restrict the subspaces to have the form R
j
i × Ql

k with
their children being formed by either subdividing R ji or Q

l
k into its

children. Hence each product space subspace can be represented by
a link between two nodes in R and Q. P is stored as a tree structure
with the same arity as R and Q. See Figure 2 and note that the links
between the two trees also form a tree.

A node in P represents a spatial subspace coupled with a subset
of directions. We associate each of these nodes with a local mo-
del,mR ji ×Q

l
k
, representingm(·, ·) on this subspace. Since our local

models need to provide quick access to their marginal integral, we
restrict them to be constant along the spatial dimension.

Scene Method L1 RMSE SSIM Memory Preproc. Render Total(s)

Pool Gauss 0.213967 1.537650 0.663241 897.57 444.00 354.00 805.00
Double 0.257429 1.132270 0.611492 1456.75 282.00 282.00 570.00

Door Gauss 0.000226 0.002333 0.997712 938.51 816.00 528.00 1341.00
Double 0.000255 0.001881 0.997360 2299.05 336.00 510.00 845.00

Table 1: Numerical results comparing the GMM approach by
Vorba et al. (Gauss) with our method (Double).

2.2 Primitives
Our data structure is equipped with four basic primitives. (i) Buil-
ding: depending on the exact realization, it is straightforward to
build R and Q. To build P one simply recursively subdivides pro-
duct spaces clusters starting with P00 = R00 ×Q0

0 . (ii) Refining: each
of these structures can be adaptively refined by simply adding new
leaf nodes. (iii) Training: for each training photon we can easily
descend to a leaf node of P and update the local distribution. Then
for each node R ji × Ql

k in P we calculate the marginal integrand
ofmR ji ×Q

l
k
(·, ·) and accumulate it in the RGB value of R ji . (iv) Sam-

pling: for a given x we descend in R to the leaf containing x and we
sum up the marginal integrands of the product space nodes stored
along the path. Clearly, this sum is the marginal integrand on the
whole S2 for x . Using this value as the normalization constant we
can simply pick one product space cluster (from the links along the
path of the descent) and sample its local distribution.

Given these primitives, our method works as follows: (i) prior to
rendering we build shallow hierarchies and train the local models
with the photons in each batch while after each batch we refine the
structures; (ii) during rendering we sample the data structure.

3 EXPERIMENTS
We implemented our method as an extension of the publicly availa-
ble source code of [Vorba et al. 2014] to enable easy comparison. We
used an Intel Xeon E5-1660v3 CPU, and utilized two scenes (Fig. 1),
providing examples of difficult scenarios. More examples are provi-
ded as supplemental materials. We have opted for simplicity hence
we used octrees as hierarchical structures and simple constants as
local models. We make our source code publicly available1. Table 1
gives error, memory and timing results. The reference has been
created by the GMM based method of [Vorba et al. 2014] using
65K samples per pixel, while the test images use 256 samples. The
preprocessing includes training the data structures with 30 bat-
ches of 300K photons. Even with the very simple constant model,
our method performs comparably to the GMM based method in
terms of quality. In terms of performance, it achieves a significant
speed-up in the processing time, with an additional speed-up in
the rendering time. We believe that the simplicity, flexibility and
robustness of our method makes it a valuable alternative to other
methods for importance sampling in Monte Carlo rendering.

REFERENCES
Norbert Bus, Nabil H. Mustafa, and Venceslas Biri. 2015. IlluminationCut. Computer

Graphics Forum (Proceedings of Eurographics 2015) 34, 2 (2015), 561–573.
Peiran Ren, Jiaping Wang, Minmin Gong, Stephen Lin, Xin Tong, and Baining Guo.

2013. Global Illumination with Radiance Regression Functions. ACM Trans. Graph.
32, 4 (July 2013), 130:1–130:12.

Jiří Vorba, Ondřej Karlík, Martin Šik, Tobias Ritschel, and Jaroslav Křivánek. 2014.
On-line Learning of Parametric Mixture Models for Light Transport Simulation.
ACM Trans. Graph. 33, 4, Article 101 (July 2014), 11 pages.

1Source code available at http://www.telecom-paristech.fr/ boubek/papers/DHS/


	Abstract
	1 Background
	2 Method
	2.1 Data structure
	2.2 Primitives

	3 Experiments
	References

